Open main menu
Home
Random
Recent changes
Special pages
Community portal
Preferences
About Wikipedia
Disclaimers
Incubator escapee wiki
Search
User menu
Talk
Dark mode
Contributions
Create account
Log in
Editing
Thales's theorem
(section)
Warning:
You are not logged in. Your IP address will be publicly visible if you make any edits. If you
log in
or
create an account
, your edits will be attributed to your username, along with other benefits.
Anti-spam check. Do
not
fill this in!
== Proof == ===First proof=== The following facts are used: the [[sum of angles of a triangle|sum of the angles]] in a [[triangle]] is equal to 180° and the base angles of an [[isosceles triangle]] are equal. {{Gallery |File:Animated illustration of thales theorem.gif|Provided {{mvar|{{overline|AC}}}} is a [[diameter]], angle at {{mvar|B}} is constant [[right angle|right]] (90°). |File:Thales' Theorem.svg|Figure for the proof. }} Since {{math|1=''{{overline|OA}}'' = ''{{overline|OB}}'' = ''{{overline|OC}}''}}, {{math|△''OBA''}} and {{math|△''OBC''}} are isosceles triangles, and by the equality of the base angles of an isosceles triangle, {{math|1=∠ ''OBC'' = ∠ ''OCB''}} and {{math|1=∠ ''OBA'' = ∠ ''OAB''}}. Let {{math|1=''α'' = ∠ ''BAO''}} and {{math|1=''β'' = ∠ ''OBC''}}. The three internal angles of the {{math|∆''ABC''}} triangle are {{mvar|α}}, {{math|(''α'' + ''β'')}}, and {{mvar|β}}. Since the sum of the angles of a triangle is equal to 180°, we have :<math>\begin{align} \alpha+ (\alpha + \beta) + \beta &= 180^\circ \\ 2\alpha + 2\beta &= 180^\circ \\ 2( \alpha + \beta ) &= 180^\circ \\ \therefore \alpha + \beta &= 90^\circ. \end{align}</math> [[Q.E.D.]] ===Second proof=== The theorem may also be proven using [[trigonometry]]: Let {{math|1=''O'' = (0, 0)}}, {{math|1=''A ''= (−1, 0)}}, and {{math|1=''C'' = (1, 0)}}. Then {{mvar|B}} is a point on the unit circle {{math|(cos ''θ'', sin ''θ'')}}. We will show that {{math|△''ABC''}} forms a right angle by proving that {{mvar|{{overline|AB}}}} and {{mvar|{{overline|BC}}}} are [[perpendicular]] — that is, the product of their [[slope]]s is equal to −1. We calculate the slopes for {{mvar|{{overline|AB}}}} and {{mvar|{{overline|BC}}}}: :<math>\begin{align} m_{AB} &= \frac{y_B - y_A}{x_B - x_A} = \frac{\sin \theta}{\cos \theta + 1} \\[2pt] m_{BC} &= \frac{y_C - y_B}{x_C - x_B} = \frac{-\sin \theta}{-\cos \theta + 1} \end{align}</math> Then we show that their product equals −1: : <math>\begin{align} &m_{AB} \cdot m_{BC}\\[4pt] = {} & \frac{\sin \theta}{\cos \theta + 1} \cdot \frac{-\sin \theta}{-\cos \theta + 1}\\[4pt] = {} & \frac{-\sin ^2 \theta}{-\cos ^2 \theta +1}\\[4pt] = {} & \frac{-\sin ^2 \theta}{\sin ^2 \theta}\\[4pt] = {} & {-1} \end{align}</math> Note the use of the [[Pythagorean trigonometric identity]] <math>\sin^2 \theta + \cos^2 \theta = 1.</math> ===Third proof=== [[File:Thales_theorem_by_refelection1.svg|thumb|Thales's theorem and reflections]] Let {{math|△''ABC''}} be a triangle in a circle where {{mvar|AB}} is a diameter in that circle. Then construct a new triangle {{math|△''ABD''}} by mirroring {{math|△''ABC''}} over the line {{mvar|AB}} and then mirroring it again over the line perpendicular to {{mvar|AB}} which goes through the center of the circle. Since lines {{mvar|AC}} and {{mvar|BD}} are [[parallel (geometry)|parallel]], likewise for {{mvar|AD}} and {{mvar|CB}}, the [[quadrilateral]] {{mvar|ACBD}} is a [[parallelogram]]. Since lines {{mvar|AB}} and {{mvar|CD}}, the diagonals of the parallelogram, are both diameters of the circle and therefore have equal length, the parallelogram must be a rectangle. All angles in a rectangle are right angles. ===Fourth proof=== The theorem can be proved using vector algebra. Let's take the vectors <math>\overrightarrow{AB}</math> and <math>\overrightarrow{CB}</math>. These vectors satisfy :<math>\overrightarrow{AB} = \overrightarrow{AO} + \overrightarrow{OB}\qquad \qquad \overrightarrow{CB} = \overrightarrow{CO} + \overrightarrow{OB}</math> and their dot product can be expanded as :<math>\overrightarrow{AB}\cdot\overrightarrow{CB} = \left(\overrightarrow{AO} + \overrightarrow{OB}\right)\cdot\left( \overrightarrow{CO} + \overrightarrow{OB}\right) =\overrightarrow{AO}\cdot\overrightarrow{CO}+(\overrightarrow{AO}+\overrightarrow{CO})\cdot \overrightarrow{OB}+\overrightarrow{OB}\cdot\overrightarrow{OB}</math> but :<math>\overrightarrow{AO}=-\overrightarrow{CO}\qquad\qquad \overrightarrow{AO}\cdot\overrightarrow{CO}=-R^2\qquad\qquad \overrightarrow{OB}\cdot\overrightarrow{OB} = R^2</math> and the dot product vanishes :<math>\overrightarrow{AB}\cdot\overrightarrow{CB} = -R^2+\overrightarrow{0}\cdot \overrightarrow{OB}+R^2=0</math> and then the vectors <math>\overrightarrow{AB}</math> and <math>\overrightarrow{CB}</math> are orthogonal and the angle ABC is a right angle.
Edit summary
(Briefly describe your changes)
By publishing changes, you agree to the
Terms of Use
, and you irrevocably agree to release your contribution under the
CC BY-SA 4.0 License
and the
GFDL
. You agree that a hyperlink or URL is sufficient attribution under the Creative Commons license.
Cancel
Editing help
(opens in new window)