Open main menu
Home
Random
Recent changes
Special pages
Community portal
Preferences
About Wikipedia
Disclaimers
Incubator escapee wiki
Search
User menu
Talk
Dark mode
Contributions
Create account
Log in
Editing
Theta function
(section)
Warning:
You are not logged in. Your IP address will be publicly visible if you make any edits. If you
log in
or
create an account
, your edits will be attributed to your username, along with other benefits.
Anti-spam check. Do
not
fill this in!
==Auxiliary functions== The Jacobi theta function defined above is sometimes considered along with three auxiliary theta functions, in which case it is written with a double 0 subscript: :<math>\vartheta_{00}(z;\tau) = \vartheta(z;\tau)</math> The auxiliary (or half-period) functions are defined by :<math>\begin{align} \vartheta_{01}(z;\tau)& = \vartheta \left(z+\tfrac12;\tau\right)\\[3pt] \vartheta_{10}(z;\tau)& = \exp\left(\tfrac14\pi i \tau + \pi i z\right)\vartheta\left(z + \tfrac12\tau;\tau\right)\\[3pt] \vartheta_{11}(z;\tau)& = \exp\left(\tfrac14\pi i \tau + \pi i\left(z+\tfrac12\right)\right)\vartheta\left(z+\tfrac12\tau + \tfrac12;\tau\right). \end{align}</math> This notation follows [[Bernhard Riemann|Riemann]] and [[David Mumford|Mumford]]; [[Carl Gustav Jacobi|Jacobi]]'s original formulation was in terms of the [[nome (mathematics)|nome]] {{math|''q'' {{=}} ''e''<sup>''iΟΟ''</sup>}} rather than {{mvar|Ο}}. In Jacobi's notation the {{mvar|ΞΈ}}-functions are written: :<math>\begin{align} \theta_1(z;q) &=\theta_1(\pi z,q)= -\vartheta_{11}(z;\tau)\\ \theta_2(z;q) &=\theta_2(\pi z,q)= \vartheta_{10}(z;\tau)\\ \theta_3(z;q) &=\theta_3(\pi z,q)= \vartheta_{00}(z;\tau)\\ \theta_4(z;q) &=\theta_4(\pi z,q)= \vartheta_{01}(z;\tau) \end{align}</math> [[File:Jacobi theta 1.png|thumb|Jacobi theta 1]] [[File:Jacobi theta 2.png|thumb|Jacobi theta 2]] [[File:Jacobi theta 3.png|thumb|Jacobi theta 3]] [[File:Jacobi theta 4.png|thumb|Jacobi theta 4]] The above definitions of the Jacobi theta functions are by no means unique. See [[Jacobi theta functions (notational variations)]] for further discussion. If we set {{math|''z'' {{=}} 0}} in the above theta functions, we obtain four functions of {{mvar|Ο}} only, defined on the upper half-plane. These functions are called ''Theta Nullwert'' functions, based on the German term for ''zero value'' because of the annullation of the left entry in the theta function expression. Alternatively, we obtain four functions of {{mvar|q}} only, defined on the unit disk <math>|q|<1</math>. They are sometimes called [[theta constant]]s:<ref group="note"><math>\theta_1(q)=0</math> for all <math>q\in\mathbb{C}</math> with <math>|q|<1</math>.</ref> :<math>\begin{align} \vartheta_{11}(0;\tau)&=-\theta_1(q)=-\sum_{n=-\infty}^\infty (-1)^{n-1/2}q^{(n+1/2)^2} \\ \vartheta_{10}(0;\tau)&=\theta_2(q)=\sum_{n=-\infty}^\infty q^{(n+1/2)^2}\\ \vartheta_{00}(0;\tau)&=\theta_3(q)=\sum_{n=-\infty}^\infty q^{n^2}\\ \vartheta_{01}(0;\tau)&=\theta_4(q)=\sum_{n=-\infty}^\infty (-1)^n q^{n^2} \end{align}</math> with the [[Nome (mathematics)|nome]] {{math|''q'' {{=}} ''e''<sup>''iΟΟ''</sup>}}. Observe that <math> \theta_1(q)=0 </math>. These can be used to define a variety of [[modular forms]], and to parametrize certain curves; in particular, the '''Jacobi identity''' is :<math>\theta_2(q)^4 + \theta_4(q)^4 = \theta_3(q)^4</math> or equivalently, :<math>\vartheta_{01}(0;\tau)^4 + \vartheta_{10}(0;\tau)^4 = \vartheta_{00}(0;\tau)^4</math> which is the [[Fermat curve]] of degree four.
Edit summary
(Briefly describe your changes)
By publishing changes, you agree to the
Terms of Use
, and you irrevocably agree to release your contribution under the
CC BY-SA 4.0 License
and the
GFDL
. You agree that a hyperlink or URL is sufficient attribution under the Creative Commons license.
Cancel
Editing help
(opens in new window)