Open main menu
Home
Random
Recent changes
Special pages
Community portal
Preferences
About Wikipedia
Disclaimers
Incubator escapee wiki
Search
User menu
Talk
Dark mode
Contributions
Create account
Log in
Editing
Time dilation
(section)
Warning:
You are not logged in. Your IP address will be publicly visible if you make any edits. If you
log in
or
create an account
, your edits will be attributed to your username, along with other benefits.
Anti-spam check. Do
not
fill this in!
==History== {{Main|History of special relativity}} Time dilation by the [[Lorentz factor]] was predicted by several authors at the turn of the 20th century.<ref>{{Cite book |last=Miller |first=Arthur I. |url=https://archive.org/details/alberteinsteinss0000mill |title=Albert Einstein's Special Theory of Relativity: Emergence (1905) and Early Interpretation (1905–1911) |publisher=Addison–Wesley |year=1981 |isbn=978-0-201-04679-3 |location=Reading, Massachusetts |url-access=registration}}.</ref><ref>{{Cite book |last=Darrigol |first=Olivier |url=http://www.bourbaphy.fr/darrigol2.pdf |title=Einstein, 1905–2005 |work=Séminaire Poincaré |year=2005 |isbn=978-3-7643-7435-8 |volume=1 |pages=1–22 |chapter=The Genesis of the Theory of Relativity |doi=10.1007/3-7643-7436-5_1}}</ref> [[Joseph Larmor]] (1897) wrote that, at least for those orbiting a nucleus, individual electrons describe corresponding parts of their orbits in times shorter for the [rest] system in the ratio: <math display="inline"> \sqrt{1 - \frac{v^2}{c^2}}</math>.<ref>{{Cite journal |last=Larmor |first=Joseph |year=1897 |title=On a Dynamical Theory of the Electric and Luminiferous Medium, Part 3, Relations with Material Media |journal=Philosophical Transactions of the Royal Society |volume=190 |pages=205–300 |bibcode=1897RSPTA.190..205L |doi=10.1098/rsta.1897.0020 |doi-access=free |title-link=s:Dynamical Theory of the Electric and Luminiferous Medium III}}</ref> [[Emil Cohn]] (1904) specifically related this formula to the rate of clocks.<ref name="cohn">{{Citation |last=Cohn |first=Emil |title=[[s:de:Zur Elektrodynamik bewegter Systeme II|Zur Elektrodynamik bewegter Systeme II]] |work=Sitzungsberichte der Königlich Preussischen Akademie der Wissenschaften |volume=1904/2 |issue=43 |pages=1404–1416 |year=1904 |trans-title=[[s:Translation:On the Electrodynamics of Moving Systems II|On the Electrodynamics of Moving Systems II]] |language=de,en}}</ref> In the context of [[special relativity]] it was shown by [[Albert Einstein]] (1905) that this effect concerns the nature of time itself, and he was also the first to point out its reciprocity or symmetry.<ref>{{Cite journal |last=Einstein |first=Albert |year=1905 |title=Zur Elektrodynamik bewegter Körper |url=http://sedici.unlp.edu.ar/handle/10915/2786 |journal=Annalen der Physik |volume=322 |issue=10 |pages=891–921 |bibcode=1905AnP...322..891E |doi=10.1002/andp.19053221004 |doi-access=free |language=de}}. See also: [http://www.fourmilab.ch/etexts/einstein/specrel/ English translation].</ref> Subsequently, [[Hermann Minkowski]] (1907) introduced the concept of [[proper time]] which further clarified the meaning of time dilation.<ref name="mink2">{{Citation |last=Minkowski |first=Hermann |title=Die Grundgleichungen für die elektromagnetischen Vorgänge in bewegten Körpern |work=Nachrichten von der Gesellschaft der Wissenschaften zu Göttingen, Mathematisch-Physikalische Klasse |pages=53–111 |year=1908 |orig-year=1907 |trans-title=[[s:Translation:The Fundamental Equations for Electromagnetic Processes in Moving Bodies|The Fundamental Equations for Electromagnetic Processes in Moving Bodies]] |title-link=s:de:Die Grundgleichungen für die elektromagnetischen Vorgänge in bewegten Körpern |language=de,en}}</ref> {{Anchor|Velocity time dilation|Relation to velocity}}
Edit summary
(Briefly describe your changes)
By publishing changes, you agree to the
Terms of Use
, and you irrevocably agree to release your contribution under the
CC BY-SA 4.0 License
and the
GFDL
. You agree that a hyperlink or URL is sufficient attribution under the Creative Commons license.
Cancel
Editing help
(opens in new window)