Open main menu
Home
Random
Recent changes
Special pages
Community portal
Preferences
About Wikipedia
Disclaimers
Incubator escapee wiki
Search
User menu
Talk
Dark mode
Contributions
Create account
Log in
Editing
Trace class
(section)
Warning:
You are not logged in. Your IP address will be publicly visible if you make any edits. If you
log in
or
create an account
, your edits will be attributed to your username, along with other benefits.
Anti-spam check. Do
not
fill this in!
== Equivalent formulations == Given a bounded linear operator <math>T : H \to H</math>, each of the following statements is equivalent to <math>T</math> being in the trace class: * <math display="inline">\operatorname{Tr} (|T|) =\sum_k \left\langle |T| \, e_k, e_k \right\rangle</math> is finite for every [[orthonormal basis]] <math>\left(e_k\right)_{k}</math> of {{mvar|H}}.{{sfn|Conway|2000|p=86}} * {{mvar|T}} is a [[Nuclear_operator#Nuclear_operators_between_Hilbert_spaces|nuclear operator]].{{sfn|Trèves|2006|p=494}}{{sfn|Conway|2000|p=89}} *: There exist two [[Orthogonal (mathematics)|orthogonal]] sequences <math>\left(x_i\right)_{i=1}^{\infty}</math> and <math>\left(y_i\right)_{i=1}^{\infty}</math> in <math>H</math> and positive [[real number]]s <math>\left(\lambda_i\right)_{i=1}^{\infty}</math> in [[Sequence_space#ℓp_spaces|<math>\ell^1</math>]] such that <math display="inline">\sum_{i=1}^{\infty} \lambda_i < \infty</math> and *::<math>x \mapsto T(x) = \sum_{i=1}^{\infty} \lambda_i \left\langle x, x_i \right\rangle y_i, \quad \forall x \in H,</math> *:where <math>\left(\lambda_i\right)_{i=1}^{\infty}</math> are the [[Singular value|singular values]] of {{mvar|T}} (or, equivalently, the eigenvalues of <math>|T|</math>), with each value repeated as often as its multiplicity.{{sfn | Reed | Simon | 1980 | pp=203-204,209}} * {{mvar|T}} is a [[Compact_operator#Compact_operator_on_Hilbert_spaces|compact operator]] with <math>\operatorname{Tr}(|T|)<\infty.</math> *:If {{mvar|T}} is trace class then{{sfn|Conway|1990|p=268}} *::<math>\|T\|_1 = \sup \left\{ |\operatorname{Tr} (C T)| : \|C\| \leq 1 \text{ and } C : H \to H \text{ is a compact operator } \right\}.</math> * {{mvar|T}} is an [[Integral linear operator|integral operator]].{{sfn|Trèves|2006|pp=502-508}} * {{mvar|T}} is equal to the composition of two [[Hilbert-Schmidt operator]]s.{{sfn|Conway|1990|p=267}} * <math display="inline">\sqrt{|T|}</math> is a Hilbert-Schmidt operator.{{sfn|Conway|1990|p=267}}
Edit summary
(Briefly describe your changes)
By publishing changes, you agree to the
Terms of Use
, and you irrevocably agree to release your contribution under the
CC BY-SA 4.0 License
and the
GFDL
. You agree that a hyperlink or URL is sufficient attribution under the Creative Commons license.
Cancel
Editing help
(opens in new window)