Open main menu
Home
Random
Recent changes
Special pages
Community portal
Preferences
About Wikipedia
Disclaimers
Incubator escapee wiki
Search
User menu
Talk
Dark mode
Contributions
Create account
Log in
Editing
Transpose
(section)
Warning:
You are not logged in. Your IP address will be publicly visible if you make any edits. If you
log in
or
create an account
, your edits will be attributed to your username, along with other benefits.
Anti-spam check. Do
not
fill this in!
=== Definition === The transpose of a matrix {{math|'''A'''}}, denoted by {{math|'''A'''<sup>T</sup>}},<ref name="Whitelaw1991">{{cite book|author=T.A. Whitelaw|title=Introduction to Linear Algebra, 2nd edition|url=https://books.google.com/books?id=6M_kDzA7-qIC&q=transpose|date=1 April 1991|publisher=CRC Press|isbn=978-0-7514-0159-2}}</ref> {{math|{{sup|β€}}'''A'''}}, {{math|'''A'''{{sup|β€}}}}, <math>A^{\intercal}</math>,<ref>{{Cite web|last=|first=|date=|title=Transpose of a Matrix Product (ProofWiki)|url=https://proofwiki.org/wiki/Transpose_of_Matrix_Product|archive-url=|archive-date=|access-date=4 Feb 2021|website=ProofWiki}}</ref><ref>{{Cite web|date=|title=What is the best symbol for vector/matrix transpose?|url=https://tex.stackexchange.com/questions/30619/what-is-the-best-symbol-for-vector-matrix-transpose|archive-url=|archive-date=|access-date=4 Feb 2021|website=[[Stack Exchange]]}}</ref> {{math|'''Aβ²'''}},<ref>{{Cite web|last=Weisstein|first=Eric W.|title=Transpose|url=https://mathworld.wolfram.com/Transpose.html|access-date=2020-09-08|website=mathworld.wolfram.com|language=en}}</ref> {{math|'''A'''<sup>tr</sup>}}, {{math|<sup>t</sup>'''A'''}} or {{math|'''A'''<sup>t</sup>}}, may be constructed by any one of the following methods: #[[Reflection (mathematics)|Reflect]] {{math|'''A'''}} over its [[main diagonal]] (which runs from top-left to bottom-right) to obtain {{math|'''A'''<sup>T</sup>}} #Write the rows of {{math|'''A'''}} as the columns of {{math|'''A'''<sup>T</sup>}} #Write the columns of {{math|'''A'''}} as the rows of {{math|'''A'''<sup>T</sup>}} Formally, the {{mvar|i}}-th row, {{mvar|j}}-th column element of {{math|'''A'''<sup>T</sup>}} is the {{mvar|j}}-th row, {{mvar|i}}-th column element of {{math|'''A'''}}: :<math>\left[\mathbf{A}^\operatorname{T}\right]_{ij} = \left[\mathbf{A}\right]_{ji}.</math> If {{math|'''A'''}} is an {{math|{{nowrap|''m'' Γ ''n''}}}} matrix, then {{math|'''A'''<sup>T</sup>}} is an {{math|{{nowrap|''n'' Γ ''m''}}}} matrix. In the case of square matrices, {{math|'''A'''<sup>T</sup>}} may also denote the {{math|T}}th power of the matrix {{math|'''A'''}}. For avoiding a possible confusion, many authors use left upperscripts, that is, they denote the transpose as {{math|<sup>T</sup>'''A'''}}. An advantage of this notation is that no parentheses are needed when exponents are involved: as {{math|1=({{sup|T}}'''A'''){{sup|''n''}} = {{sup|T}}('''A'''{{sup|''n''}})}}, notation {{math|{{sup|T}}'''A'''{{sup|''n''}}}} is not ambiguous. In this article, this confusion is avoided by never using the symbol {{math|T}} as a [[variable (mathematics)|variable]] name. ==== Matrix definitions involving transposition ==== A square matrix whose transpose is equal to itself is called a ''[[symmetric matrix]]''; that is, {{math|'''A'''}} is symmetric if :<math>\mathbf{A}^{\operatorname{T}} = \mathbf{A}.</math> A square matrix whose transpose is equal to its negative is called a ''[[skew-symmetric matrix]]''; that is, {{math|'''A'''}} is skew-symmetric if :<math>\mathbf{A}^{\operatorname{T}} = -\mathbf{A}.</math> A square [[complex number|complex]] matrix whose transpose is equal to the matrix with every entry replaced by its [[complex conjugate]] (denoted here with an overline) is called a ''[[Hermitian matrix]]'' (equivalent to the matrix being equal to its [[conjugate transpose]]); that is, {{math|'''A'''}} is Hermitian if :<math>\mathbf{A}^{\operatorname{T}} = \overline{\mathbf{A}}.</math> A square [[complex number|complex]] matrix whose transpose is equal to the negation of its complex conjugate is called a ''[[skew-Hermitian matrix]]''; that is, {{math|'''A'''}} is skew-Hermitian if :<math>\mathbf{A}^{\operatorname{T}} = -\overline{\mathbf{A}}.</math> A square matrix whose transpose is equal to its [[Inverse matrix|inverse]] is called an ''[[orthogonal matrix]]''; that is, {{math|'''A'''}} is orthogonal if :<math>\mathbf{A}^{\operatorname{T}} = \mathbf{A}^{-1}.</math> A square complex matrix whose transpose is equal to its conjugate inverse is called a ''[[unitary matrix]]''; that is, {{math|'''A'''}} is unitary if :<math>\mathbf{A}^{\operatorname{T}} = \overline{\mathbf{A}^{-1}}.</math>
Edit summary
(Briefly describe your changes)
By publishing changes, you agree to the
Terms of Use
, and you irrevocably agree to release your contribution under the
CC BY-SA 4.0 License
and the
GFDL
. You agree that a hyperlink or URL is sufficient attribution under the Creative Commons license.
Cancel
Editing help
(opens in new window)