Open main menu
Home
Random
Recent changes
Special pages
Community portal
Preferences
About Wikipedia
Disclaimers
Incubator escapee wiki
Search
User menu
Talk
Dark mode
Contributions
Create account
Log in
Editing
Triassic–Jurassic extinction event
(section)
Warning:
You are not logged in. Your IP address will be publicly visible if you make any edits. If you
log in
or
create an account
, your edits will be attributed to your username, along with other benefits.
Anti-spam check. Do
not
fill this in!
==Effects== === Marine invertebrates === The Triassic-Jurassic extinction completed the transition from the Palaeozoic [[evolutionary fauna]] to the Modern evolutionary fauna that continues to dominate the oceans in the present,<ref>{{cite journal |last1=Schoepfer |first1=Shane D. |last2=Algeo |first2=Thomas J. |last3=Van de Schootbrugge |first3=Bas |last4=Whiteside |first4=Jessica H. |date=September 2022 |title=The Triassic–Jurassic transition – A review of environmental change at the dawn of modern life |url=https://www.sciencedirect.com/science/article/abs/pii/S0012825222001830 |journal=[[Earth-Science Reviews]] |volume=232 |page=104099 |doi=10.1016/j.earscirev.2022.104099 |bibcode=2022ESRv..23204099S |hdl=1874/425545 |s2cid=250256142 |access-date=1 February 2023|hdl-access=free }}</ref> a change that began in the aftermath of the [[end-Guadalupian extinction]]<ref name="DeLaHorraEtAl2012">{{cite journal |last1=De la Horra |first1=R. |last2=Galán-Abellán |first2=A. B. |last3=López-Gómez |first3=José |last4=Sheldon |first4=Nathan D. |last5=Barrenechea |first5=J. F. |last6=Luque |first6=F. J. |last7=Arche |first7=A. |last8=Benito |first8=M. I. |date=August–September 2012 |title=Paleoecological and paleoenvironmental changes during the continental Middle–Late Permian transition at the SE Iberian Ranges, Spain |url=https://www.sciencedirect.com/science/article/abs/pii/S0921818112001221 |journal=[[Global and Planetary Change]] |volume=94–95 |pages=46–61 |doi=10.1016/j.gloplacha.2012.06.008 |bibcode=2012GPC....94...46D |access-date=15 December 2022|hdl=10261/59010 |hdl-access=free }}</ref> and continued following the [[Permian–Triassic extinction event|Permian-Triassic extinction event]] (PTME).<ref>{{cite journal | last1 = Brayard | first1 = Arnaud | last2 = Krumenacker | first2 = L. J. | last3 = Botting | first3 = Joseph P. | last4 = Jenks | first4 = James F. | last5 = Bylund | first5 = Kevin G. | last6 = Fara | first6 = Emmanuel | last7 = Vennin | first7 = Emmanuelle | last8 = Olivier | first8 = Nicolas | last9 = Goudemand | first9 = Nicolas | last10 = Saucède | first10 = Thomas | last11 = Charbonnier | first11 = Sylvain | last12 = Romano | first12 = Carlo | last13 = Doguzhaeva | first13 = Larisa | last14 = Thuy | first14 = Ben | last15 = Hautmann | first15 = Michael | last16 = Stephen | first16 = Daniel A. | last17 = Thomazo | first17 = Christophe | last18 = Escarguel | first18 = Gilles | title = Unexpected Early Triassic marine ecosystem and the rise of the Modern evolutionary fauna | journal = [[Science Advances]] | volume = 13 | issue = 2 | pages = e1602159 | date = 15 February 2017 | doi = 10.1126/sciadv.1602159 | pmid = 28246643 | pmc = 5310825 | bibcode = 2017SciA....3E2159B }}</ref> Between 23% and 34.1% of marine genera went extinct.<ref name="JackSepkoski" /><ref name="GrahamRyderBook">{{cite book |last1=Ryder |first1=Graham |url=https://books.google.com/books?id=kAup0TOL09gC&pg=PA19 |title=The Cretaceous-Tertiary Event and Other Catastrophes in Earth History |last2=Fastovsky |first2=David E. |last3=Gartner |first3=Stefan |publisher=[[Geological Society of America]] |year=1996 |isbn=9780813723075 |page=19}}</ref> [[Plankton]] diversity dropped suddenly,<ref name="PeterWard2001"">{{cite journal |last1=Ward |first1=Peter Douglas |last2=Haggart |first2=J.W. |last3=Carter |first3=E.S. |last4=Wilbur |first4=D. |last5=Tipper |first5=H.W. |last6=Evans |first6=T. |date=11 May 2001 |title=Sudden Productivity Collapse Associated with the Triassic-Jurassic Boundary Mass Extinction |url=https://www.science.org/doi/10.1126/science.1058574 |journal=[[Science (journal)|Science]] |volume=292 |issue=5519 |pages=1148–1151 |bibcode=2001Sci...292.1148W |doi=10.1126/science.1058574 |pmid=11349146 |s2cid=36667702 |access-date=23 November 2022|url-access=subscription }}</ref> but it was relatively mildly impacted at the Triassic-Jurassic boundary, although extinction rates among radiolarians rose significantly.<ref>{{cite journal |last1=Kocsis |first1=Ádám T. |last2=Kiessling |first2=Wolfgang |last3=Pálfy |first3=József |date=8 April 2016 |title=Radiolarian biodiversity dynamics through the Triassic and Jurassic: implications for proximate causes of the end-Triassic mass extinction |url=https://www.cambridge.org/core/journals/paleobiology/article/abs/radiolarian-biodiversity-dynamics-through-the-triassic-and-jurassic-implications-for-proximate-causes-of-the-endtriassic-mass-extinction/0986175366656DEE63909EF57FCFA87B |journal=[[Paleobiology (journal)|Paleobiology]] |volume=40 |issue=4 |pages=625–639 |doi=10.1666/14007 |s2cid=129600881 |access-date=28 May 2023|url-access=subscription }}</ref> Early Hettangian radiolarian communities became depauperate as a result of the TJME and consisted mainly of spumellarians and entactiniids.<ref>{{Cite journal |last=Longridge |first=Louise M. |last2=Carter |first2=Elizabeth S. |last3=Smith |first3=Paul L. |last4=Tipper |first4=Howard W. |date=9 February 2007 |title=Early Hettangian ammonites and radiolarians from the Queen Charlotte Islands, British Columbia and their bearing on the definition of the Triassic–Jurassic boundary |url=https://www.sciencedirect.com/science/article/abs/pii/S0016699512000526?via%3Dihub |journal=[[Palaeogeography, Palaeoclimatology, Palaeoecology]] |language=en |volume=244 |issue=1-4 |pages=142–169 |doi=10.1016/j.palaeo.2006.06.027 |access-date=19 February 2025 |via=Elsevier Science Direct|url-access=subscription }}</ref> Benthic foraminifera suffered relatively minor losses of diversity.<ref>{{Cite journal |last=Pálfy |first=József |last2=Demény |first2=Attila |last3=Haas |first3=János |last4=Carter |first4=Elizabeth S. |last5=Görög |first5=Ágnes |last6=Halász |first6=Dóra |last7=Oravecz-Scheffer |first7=Anna |last8=Hetényi |first8=Magdolna |last9=Márton |first9=Emő |last10=Orchard |first10=Michael J. |last11=Ozsvárt |first11=Péter |last12=Vető |first12=István |last13=Zajzon |first13=Norbert |date=9 February 2007 |title=Triassic–Jurassic boundary events inferred from integrated stratigraphy of the Csővár section, Hungary |url=https://www.sciencedirect.com/science/article/pii/S0031018206004391 |journal=[[Palaeogeography, Palaeoclimatology, Palaeoecology]] |language=en |volume=244 |issue=1-4 |pages=11–33 |doi=10.1016/j.palaeo.2006.06.021 |access-date=19 February 2025 |via=Elsevier Science Direct|url-access=subscription }}</ref> Some opportunistic foraminifera such as ''Triasina hantkeni'' increased in abundance as they thrived in oxygen-depleted waters.<ref>{{Cite journal |last=Ciarapica |first=Gloria |date=9 February 2007 |title=Regional and global changes around the Triassic–Jurassic boundary reflected in the late Norian–Hettangian history of the Apennine basins |url=https://www.sciencedirect.com/science/article/pii/S0031018206004408 |journal=[[Palaeogeography, Palaeoclimatology, Palaeoecology]] |language=en |volume=244 |issue=1-4 |pages=34–51 |doi=10.1016/j.palaeo.2006.06.022 |access-date=19 February 2025 |via=Elsevier Science Direct|url-access=subscription }}</ref> [[Ammonoidea|Ammonites]] were affected substantially by the Triassic-Jurassic extinction and were nearly wiped out.<ref>{{Cite journal |last1=Smith |first1=Paul L. |last2=Longridge |first2=Louise M. |last3=Grey |first3=Melissa |last4=Zhang |first4=Jin |last5=Liang |first5=Bo |date=4 January 2014 |title=From near extinction to recovery: Late Triassic to Middle Jurassic ammonoid shell geometry |url=https://www.idunn.no/doi/10.1111/let.12058 |journal=[[Lethaia]] |language=en |volume=47 |issue=3 |pages=337–351 |doi=10.1111/let.12058 |issn=0024-1164 |access-date=28 October 2024|hdl=2429/45186 |hdl-access=free }}</ref> [[Ceratitida]]ns, the most prominent group of ammonites in the Triassic, became extinct at the end of the [[Rhaetian]] after having their diversity reduced significantly in the [[Norian]], while other ammonite groups such as the [[Ammonitina]], [[Lytoceratina]], and [[Phylloceratina]] diversified from the [[Early Jurassic]] onward.<ref name="TannerLucas">{{cite journal |vauthors=Tanner LH, Lucas SG, Chapman MG |date=2004 |title=Assessing the record and causes of Late Triassic extinctions |url=http://nmnaturalhistory.org/pdf_files/TJB.pdf |journal=[[Earth-Science Reviews]] |volume=65 |issue=1–2 |pages=103–139 |bibcode=2004ESRv...65..103T |doi=10.1016/S0012-8252(03)00082-5 |archive-url=https://web.archive.org/web/20071025225841/http://nmnaturalhistory.org/pdf_files/TJB.pdf |archive-date=October 25, 2007 |access-date=2007-10-22}}</ref> Bivalves suffered heavy losses, although the extinction was highly selective, with some bivalve clades escaping substantial diversity losses.<ref>{{Cite journal |last1=Ros |first1=Sonia |last2=Echevarría |first2=Javier |date=25 July 2011 |title=Bivalves and evolutionary resilience: old skills and new strategies to recover from the P/T and T/J extinction events |url=http://www.tandfonline.com/doi/abs/10.1080/08912963.2011.578744 |journal=[[Historical Biology]] |language=en |volume=23 |issue=4 |pages=411–429 |doi=10.1080/08912963.2011.578744 |hdl=11336/79657 |issn=0891-2963 |access-date=28 October 2024 |via=Taylor and Francis Online|hdl-access=free }}</ref> The [[Lilliput effect]], a term coined to describe a phenomenon wherein organisms shrink in size following a mass extinction, affected [[Megalodontidae|megalodontid]] bivalves,<ref>{{cite journal |last1=Todaro |first1=Simona |last2=Rigo |first2=Manuel |last3=Randazzo |first3=Vincenzo |last4=Di Stefano |first4=Pietro |date=June 2018 |title=The end-Triassic mass extinction: A new correlation between extinction events and δ13C fluctuations from a Triassic-Jurassic peritidal succession in western Sicily |url=https://www.sciencedirect.com/science/article/abs/pii/S0037073818300484 |journal=[[Sedimentary Geology (journal)|Sedimentary Geology]] |volume=368 |pages=105–113 |doi=10.1016/j.sedgeo.2018.03.008 |bibcode=2018SedG..368..105T |s2cid=134941587 |access-date=27 August 2023|url-access=subscription }}</ref> whereas [[Limidae|file shell]] bivalves experienced the Brobdingnag effect, the reverse of the Lilliput effect.<ref>{{cite journal |last1=Atkinson |first1=Jed W. |last2=Wignall |first2=Paul B. |last3=Morton |first3=Jacob D. |last4=Aze |first4=Tracy |date=9 January 2019 |title=Body size changes in bivalves of the family Limidae in the aftermath of the end-Triassic mass extinction: the Brobdingnag effect |url=https://onlinelibrary.wiley.com/doi/10.1111/pala.12415 |journal=[[Palaeontology (journal)|Palaeontology]] |volume=62 |issue=4 |pages=561–582 |doi=10.1111/pala.12415 |bibcode=2019Palgy..62..561A |s2cid=134070316 |access-date=14 January 2023}}</ref> There is some evidence of a bivalve cosmopolitanism event during the mass extinction.<ref>{{cite journal |last1=Yan |first1=Jia |last2=Song |first2=Haijun |last3=Dai |first3=Xu |date=1 February 2023 |title=Increased bivalve cosmopolitanism during the mid-Phanerozoic mass extinctions |url=https://www.sciencedirect.com/science/article/abs/pii/S0031018222005338 |journal=[[Palaeogeography, Palaeoclimatology, Palaeoecology]] |volume=611 |page=111362 |doi=10.1016/j.palaeo.2022.111362 |bibcode=2023PPP...61111362Y |access-date=20 February 2023|url-access=subscription }}</ref> Additionally, following the TJME, mobile bivalve taxa outnumbered stationary bivalve taxa.<ref>{{Cite journal |last1=Abdelhady |first1=Ahmed A. |last2=Ali |first2=Ahmed |last3=Ahmed |first3=Mohamed S. |last4=Elewa |first4=Ashraf M. T. |date=8 September 2023 |title=Triassic/Jurassic bivalve biodiversity dynamics: biotic versus abiotic factors |url=https://link.springer.com/10.1007/s12517-023-11657-x |journal=Arabian Journal of Geosciences |language=en |volume=16 |issue=10 |doi=10.1007/s12517-023-11657-x |issn=1866-7511 |access-date=11 September 2024 |via=Springer Link|url-access=subscription }}</ref> [[Gastropoda|Gastropod]] diversity was barely affected at the Triassic-Jurassic boundary, although gastropods gradually suffered numerous losses over the late Norian and Rhaetian, during the leadup to the TJME.<ref>{{cite journal |last1=Hallam |first1=Anthony |date=2 January 2007 |title=How catastrophic was the end-Triassic mass extinction? |url=https://onlinelibrary.wiley.com/doi/abs/10.1111/j.1502-3931.2002.tb00075.x |journal=[[Lethaia]] |volume=35 |issue=2 |pages=147–157 |doi=10.1111/j.1502-3931.2002.tb00075.x |access-date=28 May 2023|url-access=subscription }}</ref> Brachiopods declined in diversity at the end of the Triassic before rediversifying in the [[Sinemurian]] and [[Pliensbachian]];<ref>{{cite journal |last1=Baeza-Carratalá |first1=José Francisco |last2=Dulai |first2=Alfréd |last3=Sandoval |first3=José |date=October 2018 |title=First evidence of brachiopod diversification after the end-Triassic extinction from the pre-Pliensbachian Internal Subbetic platform (South-Iberian Paleomargin) |url=https://www.sciencedirect.com/science/article/abs/pii/S0016699518300445 |journal=[[Geobios]] |volume=51 |issue=5 |pages=367–384 |doi=10.1016/j.geobios.2018.08.010 |bibcode=2018Geobi..51..367B |hdl=10045/81989 |s2cid=134589701 |access-date=22 May 2023|hdl-access=free }}</ref> the dielasmatoid, athyridoid, and spondylospiroid brachiopods experienced particularly severe declines.<ref>{{Cite journal |last=Tomašových |first=Adam |last2=Siblík |first2=Miloš |date=9 February 2007 |title=Evaluating compositional turnover of brachiopod communities during the end-Triassic mass extinction (Northern Calcareous Alps): Removal of dominant groups, recovery and community reassembly |url=https://www.sciencedirect.com/science/article/abs/pii/S0031018206004482 |journal=[[Palaeogeography, Palaeoclimatology, Palaeoecology]] |language=en |volume=244 |issue=1-4 |pages=170–200 |doi=10.1016/j.palaeo.2006.06.028 |access-date=19 February 2025 |via=Elsevier Science Direct|url-access=subscription }}</ref> Bryozoans, particularly taxa that lived in offshore settings, had already been in decline since the Norian and suffered further losses in the TJME.<ref>{{Cite journal |last1=Powers |first1=Catherine M. |last2=Bottjer |first2=David J. |date=1 November 2007 |title=Bryozoan paleoecology indicates mid-Phanerozoic extinctions were the product of long-term environmental stress |url=https://pubs.geoscienceworld.org/geology/article/35/11/995-998/129752 |journal=[[Geology (journal)|Geology]] |language=en |volume=35 |issue=11 |pages=995 |doi=10.1130/G23858A.1 |bibcode=2007Geo....35..995P |issn=0091-7613 |access-date=30 December 2023|url-access=subscription }}</ref> [[Ostracod|Ostracods]] also suffered significant losses,<ref>{{Cite journal |last=Wignall |first=Paul Barry |last2=Atkinson |first2=Jed W. |date=September 2020 |title=A two-phase end-Triassic mass extinction |url=https://www.sciencedirect.com/science/article/pii/S0012825220303287 |journal=[[Earth-Science Reviews]] |language=en |volume=208 |pages=103282 |doi=10.1016/j.earscirev.2020.103282 |access-date=19 February 2025 |via=Elsevier Science Direct|url-access=subscription }}</ref> although opportunistic ostracod forms thrived in the eutrophic conditions of the TJME.<ref>{{Cite journal |last=Michalík |first=Jozef |last2=Lintnerová |first2=Otília |last3=Gaździcki |first3=Andrzej |last4=Soták |first4=Ján |date=9 February 2007 |title=Record of environmental changes in the Triassic–Jurassic boundary interval in the Zliechov Basin, Western Carpathians |url=https://www.sciencedirect.com/science/article/pii/S0031018206004421 |journal=[[Palaeogeography, Palaeoclimatology, Palaeoecology]] |language=en |volume=244 |issue=1-4 |pages=71–88 |doi=10.1016/j.palaeo.2006.06.024 |access-date=19 February 2025 |via=Elsevier Science Direct|url-access=subscription }}</ref> [[Conulariida|Conulariids]] seemingly completely died out at the end of the Triassic.<ref name="TannerLucas" /> Around 96% of coral genera died out, with integrated corals being especially devastated.<ref>{{cite journal |last1=Stanley Jr. |first1=George D. |last2=Shepherd |first2=Hannah M. E. |last3=Robinson |first3=Autumn J. |date=14 August 2018 |title=Paleoecological Response of Corals to the End-Triassic Mass Extinction: An Integrational Analysis |url=https://link.springer.com/article/10.1007/s12583-018-0793-5 |journal=Journal of Earth Science |volume=29 |issue=4 |pages=879–885 |doi=10.1007/s12583-018-0793-5 |bibcode=2018JEaSc..29..879S |s2cid=133705370 |access-date=7 June 2023|url-access=subscription }}</ref> Corals practically disappeared from the [[Tethys Ocean]] at the end of the Triassic except for its northernmost reaches,<ref>{{cite journal |last1=Lathuilière |first1=Bernard |last2=Marchal |first2=Denis |date=12 January 2009 |title=Extinction, survival and recovery of corals from the Triassic to Middle Jurassic time |url=https://onlinelibrary.wiley.com/doi/abs/10.1111/j.1365-3121.2008.00856.x |journal=[[Terra Nova (journal)|Terra Nova]] |volume=21 |issue=1 |pages=57–66 |doi=10.1111/j.1365-3121.2008.00856.x |bibcode=2009TeNov..21...57L |s2cid=128758050 |access-date=7 June 2023|url-access=subscription }}</ref> resulting in an early Hettangian "coral gap".<ref name="EarlyHettangianCoralGap">{{cite journal |last1=Martindale |first1=Rowan C. |last2=Berelson |first2=William M. |last3=Corsetti |first3=Frank A. |last4=Bottjer |first4=David J. |last5=West |first5=A. Joshua |date=15 September 2012 |title=Constraining carbonate chemistry at a potential ocean acidification event (the Triassic–Jurassic boundary) using the presence of corals and coral reefs in the fossil record |url=https://www.sciencedirect.com/science/article/abs/pii/S0031018212003756 |journal=[[Palaeogeography, Palaeoclimatology, Palaeoecology]] |volume=350–352 |pages=114–123 |doi=10.1016/j.palaeo.2012.06.020 |bibcode=2012PPP...350..114M |access-date=7 June 2023|url-access=subscription }}</ref> There is good evidence for a collapse in the reef community, which was likely driven by [[ocean acidification]] resulting from {{CO2}} supplied to the atmosphere by the CAMP eruptions.<ref name="GeologicalRecordOceanAcid">{{Cite journal |last1=Hönisch |first1=Bärbel |author-link=Bärbel Hönisch |last2=Ridgwell |first2=Andy |last3=Schmidt |first3=Daniela N. |last4=Thomas |first4=Ellen |author4-link=Ellen Thomas (scientist) |last5=Gibbs |first5=Samantha J. |last6=Sluijs |first6=Appy |last7=Zeebe |first7=Richard |last8=Kump |first8=Lee |last9=Martindale |first9=Rowan C. |last10=Greene |first10=Sarah E. |last11=Kiessling |first11=Wolfgang |date=2012-03-02 |title=The Geological Record of Ocean Acidification |url=https://www.science.org/doi/10.1126/science.1208277 |journal=[[Science (journal)|Science]] |language=en |volume=335 |issue=6072 |pages=1058–1063 |bibcode=2012Sci...335.1058H |doi=10.1126/science.1208277 |issn=0036-8075 |pmid=22383840 |hdl=1874/385704 |s2cid=6361097 |access-date=19 March 2023|hdl-access=free }}</ref><ref name="OceanAcidDepTime">{{Cite journal |last1=Greene |first1=Sarah E. |last2=Martindale |first2=Rowan C. |last3=Ritterbush |first3=Kathleen A. |last4=Bottjer |first4=David J. |last5=Corsetti |first5=Frank A. |last6=Berelson |first6=William M. |date=2012-06-01 |title=Recognising ocean acidification in deep time: An evaluation of the evidence for acidification across the Triassic-Jurassic boundary |url=http://www.sciencedirect.com/science/article/pii/S0012825212000463 |journal=[[Earth-Science Reviews]] |language=en |volume=113 |issue=1 |pages=72–93|doi=10.1016/j.earscirev.2012.03.009 |bibcode=2012ESRv..113...72G|issn=0012-8252|url-access=subscription }}</ref> Most evidence points to a relatively fast recovery from the mass extinction. [[Benthic_zone|Benthic]] ecosystems recovered far more rapidly after the TJME than they did after the PTME.<ref>{{Cite journal |last1=Barras |first1=Colin G. |last2=Twitchett |first2=Richard J. |date=9 February 2007 |title=Response of the marine infauna to Triassic–Jurassic environmental change: Ichnological data from southern England |url=https://www.sciencedirect.com/science/article/pii/S0031018206004500 |journal=[[Palaeogeography, Palaeoclimatology, Palaeoecology]] |series=Triassic-Jurassic Boundary events: problems, progress, possibilities |volume=244 |issue=1 |pages=223–241 |doi=10.1016/j.palaeo.2006.06.040 |bibcode=2007PPP...244..223B |issn=0031-0182 |access-date=10 November 2023|url-access=subscription }}</ref> British Early Jurassic benthic marine environments display a relatively rapid recovery that began almost immediately after the end of the mass extinction despite numerous relapses into anoxic conditions during the earliest Jurassic.<ref>{{cite journal |last1=Atkinson |first1=J. W. |last2=Wignall |first2=Paul B. |date=15 August 2019 |title=How quick was marine recovery after the end-Triassic mass extinction and what role did anoxia play? |url=https://www.sciencedirect.com/science/article/abs/pii/S0031018219302330 |journal=[[Palaeogeography, Palaeoclimatology, Palaeoecology]] |volume=528 |pages=99–119 |doi=10.1016/j.palaeo.2019.05.011 |bibcode=2019PPP...528...99A |s2cid=164911938 |access-date=20 December 2022}}</ref> In the [[Neuquén Basin]], recovery began in the late early Hettangian and lasted until a new biodiversity equilibrium in the late Hettangian.<ref>{{cite journal |last1=Damborenea |first1=Susana E. |last2=Echevarría |first2=Javier |last3=Ros-Franch |first3=Sonia |date=1 December 2017 |title=Biotic recovery after the end-Triassic extinction event: Evidence from marine bivalves of the Neuquén Basin, Argentina |url=https://www.sciencedirect.com/science/article/abs/pii/S0031018217306946 |journal=[[Palaeogeography, Palaeoclimatology, Palaeoecology]] |volume=487 |pages=93–104 |doi=10.1016/j.palaeo.2017.08.025 |bibcode=2017PPP...487...93D |access-date=28 May 2023|hdl=11336/49626 |hdl-access=free }}</ref> Also despite recurrent anoxic episodes, large bivalves began to reappear shortly after the extinction event.<ref>{{Cite journal |last1=Opazo |first1=L. Felipe |last2=Twitchett |first2=Richard J. |date=August 2022 |title=Bivalve body-size distribution through the Late Triassic mass extinction event |url=https://www.cambridge.org/core/journals/paleobiology/article/abs/bivalve-bodysize-distribution-through-the-late-triassic-mass-extinction-event/D395EA5BCADCD7CC2EB903ADD14CC95A |journal=[[Paleobiology (journal)|Paleobiology]] |language=en |volume=48 |issue=3 |pages=420–445 |doi=10.1017/pab.2021.38 |issn=0094-8373 |access-date=28 October 2024 |via=Cambridge Core|url-access=subscription }}</ref> Siliceous sponges dominated the immediate aftermath interval thanks to the enormous influx of silica into the oceans,<ref>{{Cite journal |last=Yager |first=Joyce A. |last2=West |first2=A. Joshua |last3=Trower |first3=Elizabeth J. |last4=Fischer |first4=Woodward W. |last5=Ritterbush |first5=Kathleen |last6=Rosas |first6=Silvia |last7=Bottjer |first7=David J. |last8=Celestian |first8=Aaron J. |last9=Berelson |first9=William M. |last10=Corsetti |first10=Frank A. |date=9 January 2025 |title=Evidence for Low Dissolved Silica in mid-Mesozoic Oceans |url=https://ajsonline.org/article/122691-evidence-for-low-dissolved-silica-in-mid-mesozoic-oceans |journal=[[American Journal of Science]] |language=en |volume=325 |doi=10.2475/001c.122691 |issn=1945-452X |access-date=18 February 2025 |via=AJS Online|url-access=subscription }}</ref> a consequence of the aerial extent of the CAMP basalts that were exposed to surficial weathering processes.<ref>{{cite journal |last1=Ritterbrush |first1=Kathleen A. |last2=Bottjer |first2=David J. |last3=Corseti |first3=Frank A. |last4=Rosas |first4=Silvia |date=1 December 2014 |title=New evidence on the role of siliceous sponges in ecology and sedimentary facies development in Eastern Panthalassa following the Triassic-Jurassic mass extinction|url=https://bioone.org/journals/palaios/volume-29/issue-12/palo.2013.121/NEW-EVIDENCE-ON-THE-ROLE-OF-SILICEOUS-SPONGES-IN-ECOLOGY/10.2110/palo.2013.121.short |journal=[[PALAIOS]] |volume=29 |issue=12 |pages=652–668 |doi=10.2110/palo.2013.121 |bibcode=2014Palai..29..652R |s2cid=140546770 |access-date=2 April 2023|url-access=subscription }}</ref><ref>{{Cite journal |last1=Ritterbush |first1=Kathleen A. |last2=Rosas |first2=Silvia |last3=Corsetti |first3=Frank A. |last4=Bottjer |first4=David J. |last5=West |first5=A. Joshua |date=15 February 2015 |title=Andean sponges reveal long-term benthic ecosystem shifts following the end-Triassic mass extinction |url=https://www.sciencedirect.com/science/article/pii/S0031018214005951 |journal=[[Palaeogeography, Palaeoclimatology, Palaeoecology]] |volume=420 |pages=193–209 |doi=10.1016/j.palaeo.2014.12.002 |bibcode=2015PPP...420..193R |issn=0031-0182 |access-date=10 November 2023|url-access=subscription }}</ref> In some regions, recovery was slow; in the northern Tethys, carbonate platforms in the TJME's aftermath became dominated by microbial carbonate producers and [[r-selected]] calcitic taxa such as ''Thaumatoporella parvovesiculifera'', while dasycladacean algae did not reappear until the Sinemurian [[Stage (stratigraphy)|stage]].<ref>{{Cite journal |last=Montanaro |first=Andrea |last2=Falzoni |first2=Francesca |last3=Iannace |first3=Alessandro |last4=Parente |first4=Mariano |date=1 September 2024 |title=Patterns of extinction and recovery across the Triassic–Jurassic boundary interval in three resilient Southern Tethyan carbonate platforms |url=https://www.sciencedirect.com/science/article/pii/S0031018224003249 |journal=[[Palaeogeography, Palaeoclimatology, Palaeoecology]] |language=en |volume=649 |pages=112335 |doi=10.1016/j.palaeo.2024.112335 |access-date=18 February 2025 |via=Elsevier Science Direct|doi-access=free }}</ref> === Marine vertebrates === [[File:Euconodonta.gif|left|thumb|Conodonts were a major vertebrate group which died out at the end of the Triassic]] Fish did not suffer a mass extinction at the end of the Triassic. The Late Triassic in general did experience a gradual drop in [[actinopterygii]]an diversity after an evolutionary explosion in the [[Middle Triassic]]. Though this may have been due to falling sea levels or the [[Carnian Pluvial Event]], it may instead be a result of [[sampling bias]] considering that Middle Triassic fish have been more extensively studied than Late Triassic fish.<ref>{{Cite journal|last1=Romano|first1=Carlo|last2=Koot|first2=Martha B.|last3=Kogan|first3=Ilja|last4=Brayard|first4=Arnaud|last5=Minikh|first5=Alla V.|last6=Brinkmann|first6=Winand|last7=Bucher|first7=Hugo|last8=Kriwet|first8=Jürgen|date=27 November 2014|title=Permian–Triassic Osteichthyes (bony fishes): diversity dynamics and body size evolution|url=https://www.researchgate.net/publication/268810424|journal=[[Biological Reviews of the Cambridge Philosophical Society]]|volume=91|issue=1|pages=106–147|doi=10.1111/brv.12161|issn=1469-185X|pmid=25431138|s2cid=5332637}}</ref> Despite the apparent drop in diversity, [[neopterygii]]ans (which include most modern bony fish) suffered less than more "primitive" actinopterygiians, indicating a biological turnover where modern groups of fish started to supplant earlier groups.<ref name="TannerLucas" /> Pycnodontiform fish were insignificantly affected.<ref>{{Cite journal |last1=Stumpf |first1=Sebastian |last2=Ansorge |first2=Jörg |last3=Pfaff |first3=Cathrin |last4=Kriwet |first4=Jürgen |date=4 July 2017 |title=Early Jurassic diversification of pycnodontiform fishes (Actinopterygii, Neopterygii) after the end-Triassic extinction event: evidence from a new genus and species, Grimmenodon aureum |journal=[[Journal of Vertebrate Paleontology]] |language=en |volume=37 |issue=4 |pages=e1344679 |doi=10.1080/02724634.2017.1344679 |issn=0272-4634 |pmc=5646184 |pmid=29170576 }}</ref> [[Conodont]]s, which were prominent index fossils throughout the Paleozoic and Triassic, finally became extinct at the T-J boundary following declining diversity.<ref name="TannerLucas" /> Like fish, marine reptiles experienced a substantial drop in diversity between the Middle Triassic and the Jurassic. However, their extinction rate at the Triassic–Jurassic boundary was not elevated. The highest extinction rates experienced by Mesozoic marine reptiles actually occurred at the end of the [[Ladinian]] stage, which corresponds to the end of the Middle Triassic. The only marine reptile [[Family (biology)|families]] which became extinct at or slightly before the Triassic–Jurassic boundary were the [[Placochelyidae|placochelyids]] (the last family of [[Placodontia|placodonts]]), making [[plesiosaur]]s the only surviving [[sauropterygia]]ns,<ref>{{cite journal | pmc=6873879 | date=2019 | last1=Fleischle | first1=C. V. | last2=Sander | first2=P. M. | last3=Wintrich | first3=T. | last4=Caspar | first4=K. R. | title=Hematological convergence between Mesozoic marine reptiles (Sauropterygia) and extant aquatic amniotes elucidates diving adaptations in plesiosaurs | journal=PeerJ | volume=7 | pages=e8022 | doi=10.7717/peerj.8022 | doi-access=free | pmid=31763069 }}</ref> and giant [[ichthyosaur]]s such as [[Shastasauridae|shastasaurids]].<ref>{{Cite journal|last=Bardet|first=Nathalie|date=1994-07-01|title=Extinction events among Mesozoic marine reptiles|journal=[[Historical Biology]]|volume=7|issue=4|pages=313–324|doi=10.1080/10292389409380462|bibcode=1994HBio....7..313B |issn=0891-2963|url=http://doc.rero.ch/record/15138/files/PAL_E2412.pdf }}</ref> Some authors have argued that the end of the Triassic acted as a genetic "[[Population bottleneck|bottleneck]]" for ichthyosaurs, which never regained the level of anatomical diversity and disparity which they possessed during the Triassic,<ref>{{Cite journal|last1=Thorne|first1=Philippa M.|last2=Ruta|first2=Marcello|last3=Benton|first3=Michael J.|date=17 May 2011|title=Resetting the evolution of marine reptiles at the Triassic–Jurassic boundary|journal=[[Proceedings of the National Academy of Sciences of the United States of America]]|language=en|volume=108|issue=20|pages=8339–8344|doi=10.1073/pnas.1018959108|issn=0027-8424|pmid=21536898|pmc=3100925|bibcode=2011PNAS..108.8339T|doi-access=free}}</ref> although analysis of ichthyosaurian and eosauropterygian disparity across the Triassic-Jurassic transition has shown no evidence for such a bottleneck.<ref>{{Cite journal |last=Laboury |first=Antoine |last2=Stubbs |first2=Thomas L. |last3=Wolniewicz |first3=Andrzej S. |last4=Liu |first4=Jun |last5=Scheyer |first5=Torsten M. |last6=Jones |first6=Marc E H |last7=Fischer |first7=Valentin |date=22 December 2024 |editor-last=Parins-Fukuchi |editor-first=Tomomi |editor2-last=Morlon |editor2-first=Hélène |title=Contrasting macroevolutionary patterns in pelagic tetrapods across the Triassic–Jurassic transition |url=https://academic.oup.com/evolut/article/79/1/38/7758686 |journal=[[Evolution (journal)|Evolution]] |language=en |volume=79 |issue=1 |pages=38–50 |doi=10.1093/evolut/qpae138 |issn=0014-3820 |access-date=18 February 2025 |via=Oxford Academic|url-access=subscription }}</ref> The high diversity of rhomaelosaurids immediately after the TJME points to a gradual extinction of marine reptiles rather than an abrupt one.<ref>{{Cite journal |last1=Benson |first1=Roger B. J. |last2=Evans |first2=Mark |last3=Druckenmiller |first3=Patrick S. |date=16 March 2012 |editor-last=Lalueza-Fox |editor-first=Carles |title=High Diversity, Low Disparity and Small Body Size in Plesiosaurs (Reptilia, Sauropterygia) from the Triassic–Jurassic Boundary |journal=PLOS ONE |language=en |volume=7 |issue=3 |pages=e31838 |doi=10.1371/journal.pone.0031838 |doi-access=free |issn=1932-6203 |pmc=3306369 |pmid=22438869 }}</ref> === Terrestrial animals === [[File:Mastodonsaurus giganteus.JPG|thumb|[[Capitosauria|Capitosaurs]] (such as this ''[[Mastodonsaurus]]'') were among the major amphibian groups which became extinct at the T–J boundary, though many may have died out earlier.]] Terrestrial fauna was affected by the TJME much more severely than marine fauna.<ref>{{Cite journal |last1=Cribb |first1=Alison T. |last2=Formoso |first2=Kiersten K. |last3=Woolley |first3=C. Henrik |last4=Beech |first4=James |last5=Brophy |first5=Shannon |last6=Byrne |first6=Paul |last7=Cassady |first7=Victoria C. |last8=Godbold |first8=Amanda L. |last9=Larina |first9=Ekaterina |last10=Maxeiner |first10=Philip-peter |last11=Wu |first11=Yun-Hsin |last12=Corsetti |first12=Frank A. |last13=Bottjer |first13=David J. |date=6 December 2023 |title=Contrasting terrestrial and marine ecospace dynamics after the end-Triassic mass extinction event |journal=[[Proceedings of the Royal Society B: Biological Sciences]] |language=en |volume=290 |issue=2012 |doi=10.1098/rspb.2023.2232 |issn=0962-8452 |pmc=10697803 |pmid=38052241 }}</ref> One of the earliest pieces of evidence for a Late Triassic extinction was a major turnover in terrestrial tetrapods such as amphibians, reptiles, and synapsids. [[Edwin H. Colbert]] drew parallels between the system of extinction and adaptation between the Triassic–Jurassic and Cretaceous–Paleogene boundaries. He recognized how dinosaurs, [[Lepidosauria|lepidosaurs]] ([[lizard]]s and their relatives), and [[Crocodyliformes|crocodyliforms]] ([[crocodilia]]ns and their relatives) filled the niches of more ancient groups of amphibians and reptiles which were extinct by the start of the Jurassic.<ref name=":3">{{Cite journal |last=Colbert |first=Edwin H. |date=15 September 1958 |title=Tetrapod Extinctions at the End of the Triassic Period |url=https://www.pnas.org/content/pnas/44/9/973.full.pdf |journal=[[Proceedings of the National Academy of Sciences of the United States of America]] |volume=44 |issue=9 |pages=973–977 |bibcode=1958PNAS...44..973C |doi=10.1073/pnas.44.9.973 |issn=0027-8424 |pmc=528676 |pmid=16590299 |doi-access=free}}</ref> Olsen (1987) estimated that 42% of all terrestrial tetrapods became extinct at the end of the Triassic, based on his studies of faunal changes in the [[Newark Supergroup]] of eastern North America.<ref name=":2" /> In contrast to the end-Cretaceous extinction, the TJME substantially affected freshwater ecosystems, and it further differed from the former in that body size did not affect extinction risk.<ref name="ImpactEventBiologicalProcesses">{{cite book |last1=Buffetaut |first1=Eric |url=https://link.springer.com/book/10.1007/b135965 |title=Biological Processes Associated with Impact Events |publisher=Springer |year=2006 |isbn=978-3-540-25736-3 |editor-last1=Cockell |editor-first1=Charles |series=Impact Studies |location=Berlin |pages=245–256 |chapter=Continental Vertebrate Extinctions at the Triassic-Jurassic and Cretaceous-Tertiary Boundaries: a Comparison |doi=10.1007/3-540-25736-5_11 |editor-last2=Gilmour |editor-first2=Iain |editor-last3=Koeberl |editor-first3=Charles |chapter-url=https://link.springer.com/chapter/10.1007/3-540-25736-5_11}}</ref> More modern studies have debated whether the turnover in Triassic tetrapods was abrupt at the end of the Triassic, or instead more gradual.<ref name="TannerLucas" /> During the Triassic, [[amphibian]]s were mainly represented by large, crocodile-like members of the order [[Temnospondyli]]. Although the earliest [[lissamphibia]]ns (modern amphibians like [[frog]]s and [[salamander]]s) did appear during the Triassic, they would become more common in the Jurassic while the temnospondyls diminished in diversity past the Triassic–Jurassic boundary.<ref name=":2" /> Although the decline of temnospondyls did send shockwaves through freshwater ecosystems, it was probably not as abrupt as some authors have suggested. [[Brachyopoidea|Brachyopoids]], for example, survived until the [[Cretaceous]] according to new discoveries in the 1990s. Several temnospondyl groups did become extinct near the end of the Triassic despite earlier abundance, but it is uncertain how close their extinctions were to the end of the Triassic. The last known [[Metoposauridae|metoposaurids]] ("''[[Koskinonodon|Apachesaurus]]''") were from the [[Redonda Formation]], which may have been early [[Rhaetian]] or late [[Norian]]. ''[[Gerrothorax]]'', the last known [[Plagiosauridae|plagiosaurid]], has been found in rocks which are probably (but not certainly) Rhaetian, while a [[Capitosauria|capitosaur]] humerus was found in Rhaetian-age deposits in 2018. Therefore, plagiosaurids and capitosaurs were likely victims of an extinction at the very end of the Triassic, while most other temnospondyls were already extinct.<ref name="KonietzkoMeierEtAl2018">{{Cite journal|last1=Konietzko-Meier|first1=Dorota|last2=Werner|first2=Jennifer D.|last3=Wintrich|first3=Tanja|last4=Martin Sander|first4=P.|date=31 October 2018|title=A large temnospondyl humerus from the Rhaetian (Late Triassic) of Bonenburg (Westphalia, Germany) and its implications for temnospondyl extinction|journal=[[Journal of Iberian Geology]]|volume=45|issue=2|pages=287–300|doi=10.1007/s41513-018-0092-0|s2cid=134049099|issn=1886-7995}}</ref> [[File:Machaeroprosopus IMG 0720.jpg|left|thumb|Reptile extinction at the end of the Triassic is poorly understood, but [[phytosaur]]s (such as this ''[[Redondasaurus]]'') went from abundant to extinct by the end of the Rhaetian.]] Terrestrial reptile faunas were dominated by [[Archosauromorpha|archosauromorphs]] during the Triassic, particularly [[phytosaur]]s and members of [[Pseudosuchia]] (the reptile lineage which leads to modern [[crocodilia]]ns). In the Early Jurassic and onwards, dinosaurs and pterosaurs became the most common land reptiles, while small reptiles were mostly represented by [[Lepidosauromorpha|lepidosauromorphs]] (such as lizards and tuatara relatives). Among pseudosuchians, only small [[Crocodylomorpha|crocodylomorphs]] did not become extinct by the end of the Triassic, with both dominant herbivorous subgroups (such as [[aetosaur]]s) and carnivorous ones ([[Rauisuchidae|rauisuchids]]) having died out.<ref name=":2" /> Phytosaurs, [[drepanosaur]]s, [[Trilophosauridae|trilophosaurids]], [[Tanystropheidae|tanystropheids]], and [[Procolophonidae|procolophonids]], which were other common reptiles in the Late Triassic, had also become extinct by the start of the Jurassic. However, pinpointing the extinction of these different land reptile groups is difficult, as the last stage of the Triassic, the Rhaetian, and the first stage of the Jurassic, the [[Hettangian]], each have few records of large land animals; some paleontologists have considered only phytosaurs and procolophonids to have become extinct at the Triassic–Jurassic boundary, with other groups having become extinct earlier.<ref name="TannerLucas" /> However, it is likely that many other groups survived up until the boundary according to British fissure deposits from the Rhaetian. Aetosaurs, [[Kuehneosauridae|kuehneosaurids]], drepanosaurs, [[Thecodontosauridae|thecodontosaurids]], "saltoposuchids" (like ''[[Terrestrisuchus]]''), trilophosaurids, and various non-[[Crocodylomorpha|crocodylomorph]] pseudosuchians are all examples of Rhaetian reptiles which may have become extinct at the Triassic–Jurassic boundary.<ref>{{Cite journal|last1=Whiteside|first1=D. I.|last2=Marshall|first2=J. E. A.|date=1 January 2008|title=The age, fauna and palaeoenvironment of the Late Triassic fissure deposits of Tytherington, South Gloucestershire, UK|url=https://www.researchgate.net/publication/242099762|journal=[[Geological Magazine]]|language=en|volume=145|issue=1|pages=105–147|doi=10.1017/S0016756807003925|bibcode=2008GeoM..145..105W|s2cid=129614690|issn=0016-7568}}</ref><ref name="Edgar">{{Cite journal |last1=Patrick |first1=Erin L. |last2=Whiteside |first2=David I. |last3=Benton |first3=Michael J. |year=2019 |title=A new crurotarsan archosaur from the Late Triassic of South Wales |url=https://cpb-eu-w2.wpmucdn.com/blogs.bristol.ac.uk/dist/6/525/files/2019/08/2019Edgar.pdf |journal=[[Journal of Vertebrate Paleontology]] |volume=39 |issue=3 |pages=e1645147 |bibcode=2019JVPal..39E5147P |doi=10.1080/02724634.2019.1645147 |s2cid=202848499 |archive-url=https://web.archive.org/web/20190830221411/https://cpb-eu-w2.wpmucdn.com/blogs.bristol.ac.uk/dist/6/525/files/2019/08/2019Edgar.pdf |archive-date=30 August 2019}}</ref><ref>{{Cite journal |last1=Tolchard |first1=Frederick |last2=Nesbitt |first2=Sterling J. |last3=Desojo |first3=Julia B. |last4=Viglietti |first4=Pia |last5=Butler |first5=Richard J. |author-link5=Richard J. Butler |last6=Choiniere |first6=Jonah N. |date=2019-12-01 |title='Rauisuchian' material from the lower Elliot Formation of South Africa and Lesotho: Implications for Late Triassic biogeography and biostratigraphy |url=http://pure-oai.bham.ac.uk/ws/files/74379812/Tolchard_et_al._in_press.pdf |journal=[[Journal of African Earth Sciences]] |volume=160 |pages=103610 |bibcode=2019JAfES.16003610T |doi=10.1016/j.jafrearsci.2019.103610 |issn=1464-343X |s2cid=202902771}}</ref> In the TJME's aftermath, dinosaurs experienced a major radiation, filling some of the niches vacated by the victims of the extinction.<ref name="MichaelJamesBenton">{{cite journal |last1=Benton |first1=Michael James |year=1991 |title=What really happened in the late Triassic? |url=https://www.tandfonline.com/doi/abs/10.1080/10292389109380406 |journal=[[Historical Biology]] |volume=5 |issue=2–4 |pages=263–278 |bibcode=1991HBio....5..263B |doi=10.1080/10292389109380406 |access-date=15 December 2022|url-access=subscription }}</ref> Crocodylomorphs likewise underwent a very rapid and major adaptive radiation.<ref name="ToljagićButler2013">{{cite journal |last1=Toljagić |first1=Olja |last2=Butler |first2=Richard J. |date=23 June 2013 |title=Triassic–Jurassic mass extinction as trigger for the Mesozoic radiation of crocodylomorphs |journal=[[Biology Letters]] |volume=9 |issue=3 |pages=1–4 |doi=10.1098/rsbl.2013.0095 |pmc=3645043 |pmid=23536443}}</ref> Surviving non-mammalian synapsid clades similarly played a role in the post-TJME adaptive radiation during the Early Jurassic.<ref name="MichaelJamesBenton" /> Herbivorous insects were minimally affected by the TJME; evidence from the Sichuan Basin shows they were overall able to quickly adapt to the floristic turnover by exploiting newly abundant plants.<ref>{{Cite journal |last1=Xu |first1=Yuanyuan |last2=Wang |first2=Yongdong |last3=Li |first3=Liqin |last4=Lu |first4=Ning |last5=Zhu |first5=Yanbin |last6=Huang |first6=Zhuanli |last7=McLoughlin |first7=Stephen |date=9 January 2024 |title=Plant-insect interactions across the Triassic–Jurassic boundary in the Sichuan Basin, South China |journal=[[Frontiers in Ecology and Evolution]] |volume=11 |doi=10.3389/fevo.2023.1338865 |doi-access=free |issn=2296-701X }}</ref> Odonates suffered highly selective losses, and their morphospace was heavily restructured as a result.<ref>{{Cite journal |last1=Deregnaucourt |first1=Isabelle |last2=Bardin |first2=Jérémie |last3=Villier |first3=Loïc |last4=Julliard |first4=Romain |last5=Béthoux |first5=Olivier |date=18 August 2023 |title=Disparification and extinction trade-offs shaped the evolution of Permian to Jurassic Odonata |url=https://www.researchgate.net/publication/372525075 |journal=[[iScience]] |language=en |volume=26 |issue=8 |pages=107420 |doi=10.1016/j.isci.2023.107420 |pmc=10424082 |pmid=37583549 |access-date=31 October 2024 |via=ResearchGate}}</ref> ===Terrestrial plants=== The extinction event marks a floral turnover as well, with estimates of the percentage of Rhaetian pre-extinction plants being lost ranging from 17% to 73%.<ref>{{cite journal |last1=Lindström |first1=Sofie |date=1 September 2015 |title=Palynofloral patterns of terrestrial ecosystem change during the end-Triassic event – a review |url=https://pubs.geoscienceworld.org/geolmag/article-abstract/153/2/223/251206/Palynofloral-patterns-of-terrestrial-ecosystem?redirectedFrom=fulltext |journal=[[Geological Magazine]] |volume=153 |issue=2 |pages=223–251 |doi=10.1017/S0016756815000552 |s2cid=131410887 |access-date=28 May 2023|url-access=subscription }}</ref> Though spore turnovers are observed across the Triassic-Jurassic boundary, the abruptness of this transition and the relative abundances of given spore types both before and after the boundary are highly variable from one region to another, pointing to a global ecological restructuring rather than a mass extinction of plants.<ref name="BarbackaEtAlPPP2">{{cite journal |last1=Barbacka |first1=Maria |last2=Pacyna |first2=Grzegorz |last3=Kocsis |first3=Ádam T. |last4=Jarzynka |first4=Agata |last5=Ziaja |first5=Jadwiga |last6=Bodor |first6=Emese |date=15 August 2017 |title=Changes in terrestrial floras at the Triassic-Jurassic Boundary in Europe |url=https://www.sciencedirect.com/science/article/abs/pii/S0031018216304977 |journal=[[Palaeogeography, Palaeoclimatology, Palaeoecology]] |volume=480 |pages=80–93 |bibcode=2017PPP...480...80B |doi=10.1016/j.palaeo.2017.05.024 |access-date=12 December 2022}}</ref> Overall, plants suffered minor diversity losses on a global scale as a result of the extinction, but species turnover rates were high and substantial changes occurred in terms of relative abundance and growth distribution among taxa.<ref>{{Cite journal |last1=McElwain |first1=Jennifer C. |last2=Popa |first2=Mihai E. |last3=Hesselbo |first3=Stephen P. |last4=Haworth |first4=Matthew |last5=Surlyk |first5=Finn |date=December 2007 |title=Macroecological responses of terrestrial vegetation to climatic and atmospheric change across the Triassic/Jurassic boundary in East Greenland |url=http://dx.doi.org/10.1666/06026.1 |journal=Paleobiology |volume=33 |issue=4 |pages=547–573 |doi=10.1666/06026.1 |bibcode=2007Pbio...33..547M |s2cid=129330139 |issn=0094-8373|url-access=subscription }}</ref> Evidence from Central Europe suggests that rather than a sharp, very rapid decline followed by an adaptive radiation, a more gradual turnover in both fossil plants and spores with several intermediate stages is observed over the course of the extinction event.<ref>{{cite journal |last1=Gravendyck |first1=Julia |last2=Schobben |first2=Martin |last3=Bachelier |first3=Julien B. |last4=Kürschner |first4=Wolfram Michael |date=November 2020 |title=Macroecological patterns of the terrestrial vegetation history during the end-Triassic biotic crisis in the central European Basin: A palynological study of the Bonenburg section (NW-Germany) and its supra-regional implications |url=https://www.sciencedirect.com/science/article/abs/pii/S0921818120301776 |journal=[[Global and Planetary Change]] |volume=194 |page=103286 |bibcode=2020GPC...19403286G |doi=10.1016/j.gloplacha.2020.103286 |hdl=1874/409017 |s2cid=225521004 |access-date=12 December 2022|hdl-access=free }}</ref> Extinction of plant species can in part be explained by the suspected increased carbon dioxide in the atmosphere as a result of CAMP volcanic activity, which would have created [[photoinhibition]] and decreased transpiration levels among species with low photosynthetic plasticity, such as the broad leaved [[Ginkgoales]] which declined to near extinction across the Tr–J boundary.<ref name=":02">{{Cite journal |last1=Yiotis |first1=C. |last2=Evans-Fitz.Gerald |first2=C. |last3=McElwain |first3=J. C. |date=2017-03-11 |title=Differences in the photosynthetic plasticity of ferns and Ginkgo grown in experimentally controlled low [O2]:[CO2] atmospheres may explain their contrasting ecological fate across the Triassic–Jurassic mass extinction boundary |url=http://dx.doi.org/10.1093/aob/mcx018 |journal=Annals of Botany |volume=119 |issue=8 |pages=1385–1395 |doi=10.1093/aob/mcx018 |pmid=28334286 |pmc=5604595 |issn=0305-7364}}</ref> Ferns and other species with dissected leaves displayed greater adaptability to atmosphere conditions of the extinction event,<ref>{{Cite journal |last1=Bos |first1=Remco |last2=Lindström |first2=Sofie |last3=van Konijnenburg-van Cittert |first3=Han |last4=Hilgen |first4=Frederik |last5=Hollaar |first5=Teuntje P. |last6=Aalpoel |first6=Hendrik |last7=van der Weijst |first7=Carolien |last8=Sanei |first8=Hamed |last9=Rudra |first9=Arka |last10=Sluijs |first10=Appy |last11=van de Schootbrugge |first11=Bas |date=1 September 2023 |title=Triassic-Jurassic vegetation response to carbon cycle perturbations and climate change |journal=[[Global and Planetary Change]] |volume=228 |pages=104211 |doi=10.1016/j.gloplacha.2023.104211 |bibcode=2023GPC...22804211B |issn=0921-8181 |doi-access=free }}</ref> and in some instances were able to proliferate across the boundary and into the Jurassic.<ref name=":02" /> The species ''[[Lepidopteris|Lepidopteris ottonis]]'' evolved a reliance on asexual reproduction amidst the environmental chaos of the TJME.<ref>{{Cite journal |last=Vajda |first=Vivi |last2=McLoughlin |first2=Stephen |last3=Slater |first3=Sam M. |last4=Gustafsson |first4=Ola |last5=Rasmusson |first5=Allan G. |date=1 October 2023 |title=The ‘seed-fern’ Lepidopteris mass-produced the abnormal pollen Ricciisporites during the end-Triassic biotic crisis |url=https://www.sciencedirect.com/science/article/pii/S0031018223003413 |journal=[[Palaeogeography, Palaeoclimatology, Palaeoecology]] |language=en |volume=627 |pages=111723 |doi=10.1016/j.palaeo.2023.111723 |access-date=18 February 2025 |via=Elsevier Science Direct}}</ref> In the Jiyuan Basin of North China, ''Classopolis'' content increased drastically in concordance with warming, drying, wildfire activity, enrichments in isotopically light carbon, and an overall reduction in floral diversity.<ref>{{Cite journal |last1=Zhang |first1=Peixin |last2=Lu |first2=Jing |last3=Yang |first3=Minfang |last4=Bond |first4=David P. G. |last5=Greene |first5=Sarah E. |last6=Liu |first6=Le |last7=Zhang |first7=Yuanfu |last8=Wang |first8=Ye |last9=Wang |first9=Ziwei |last10=Li |first10=Shan |last11=Shao |first11=Longyi |last12=Hilton |first12=Jason |date=28 March 2022 |title=Volcanically-Induced Environmental and Floral Changes Across the Triassic-Jurassic (T-J) Transition |journal=[[Frontiers in Ecology and Evolution]] |volume=10 |pages=1–17 |doi=10.3389/fevo.2022.853404 |issn=2296-701X |doi-access=free }}</ref> In the [[Sichuan Basin]], relatively cool mixed forests in the late Rhaetian were replaced by hot, arid fernlands during the Triassic–Jurassic transition, which in turn later gave way to a cheirolepid-dominated flora in the Hettangian and Sinemurian.<ref>{{cite journal |last1=Li |first1=Liqin |last2=Wang |first2=Yongdong |last3=Kürschner |first3=Wolfram M. |last4=Ruhl |first4=Micha |last5=Vajda |first5=Vivi |date=15 October 2020 |title=Palaeovegetation and palaeoclimate changes across the Triassic–Jurassic transition in the Sichuan Basin, China |url=https://www.sciencedirect.com/science/article/abs/pii/S0031018220303369 |journal=[[Palaeogeography, Palaeoclimatology, Palaeoecology]] |volume=556 |page=109891 |bibcode=2020PPP...55609891L |doi=10.1016/j.palaeo.2020.109891 |s2cid=225600810 |access-date=22 May 2023}}</ref> The abundance of ferns in China that were resistant to high levels of aridity increased significantly across the Triassic–Jurassic boundary, though ferns better adapted for moist, humid environments declined, indicating that plants experienced major environmental stress, albeit not an outright mass extinction.<ref>{{cite journal |last1=Zhou |first1=Ning |last2=Xu |first2=Yuanyuan |last3=Li |first3=Liqin |last4=Lu |first4=Ning |last5=An |first5=Pengcheng |last6=Popa |first6=Mihai Emilian |last7=Kürschner |first7=Wolfram Michael |last8=Zhang |first8=Xingliang |last9=Wang |first9=Yongdong |date=October 2021 |title=Pattern of vegetation turnover during the end-Triassic mass extinction: Trends of fern communities from South China with global context |journal=[[Global and Planetary Change]] |volume=205 |page=103585 |bibcode=2021GPC...20503585Z |doi=10.1016/j.gloplacha.2021.103585 |doi-access=free}}</ref> In some regions, however, major floral extinctions did occur, with some researchers challenging the hypothesis of there being no significant floral mass extinction on this basis. In the [[Newark Supergroup]] of the [[East Coast of the United States|United States East Coast]], about 60% of the diverse monosaccate and bisaccate pollen assemblages disappear at the Tr–J boundary, indicating a major extinction of plant genera. [[Early Jurassic]] [[pollen]] assemblages are dominated by ''Corollina'', a new genus that took advantage of the empty [[Niche segregation|niches]] left by the extinction.<ref name="Fowell19942">{{Citation |last1=Fowell |first1=S. J. |title=Geologically rapid Late Triassic extinctions: Palynological evidence from the Newark Supergroup |date=1994 |work=Geological Society of America Special Papers |pages=197–206 |publisher=Geological Society of America |doi=10.1130/spe288-p197 |isbn=978-0813722887 |last2=Cornet |first2=B. |last3=Olsen |first3=P. E.}}</ref> The site of St. Audrie's Bay displays a shift from diverse gymnosperm-dominated forests to Cheirolepidiaceae-dominated monocultures.<ref name="BonisAndKurschner2012" /> The Danish Basin saw 34% of its Rhaetian spore-pollen assemblage, including ''Cingulizonates rhaeticus'', ''Limbosporites lundbladiae'', ''Polypodiisporites polymicroforatus'', and ''Ricciisporites tuberculatus'', disappear, with the post-extinction plant community being dominated by pinacean conifers such as ''Pinuspollenites minimus'' and tree ferns such as ''Deltoidospora'', with ginkgos, cycads, cypresses, and corystospermous seed ferns also represented.<ref>{{Cite journal |last1=Lindström |first1=Sofie |last2=Erlström |first2=Mikael |last3=Piasecki |first3=Stefan |last4=Nielsen |first4=Lars Henrik |last5=Mathiesen |first5=Anders |date=September 2017 |title=Palynology and terrestrial ecosystem change of the Middle Triassic to lowermost Jurassic succession of the eastern Danish Basin |url=https://linkinghub.elsevier.com/retrieve/pii/S0034666716300318 |journal=[[Review of Palaeobotany and Palynology]] |language=en |volume=244 |pages=65–95 |doi=10.1016/j.revpalbo.2017.04.007 |access-date=28 March 2024 |via=Elsevier Science Direct|url-access=subscription }}</ref> Along the margins of the European Epicontinental Sea and the European shores of the Tethys, coastal and near-coastal mires fell victim to an abrupt sea level rise. These mires were replaced by a pioneering opportunistic flora after an abrupt sea level fall, although its heyday was short lived and it died out shortly after its rise.<ref>{{cite journal |last1=Lindström |first1=Sofie |date=17 September 2021 |title=Two-phased Mass Rarity and Extinction in Land Plants During the End-Triassic Climate Crisis |journal=[[Frontiers in Earth Science]] |volume=9 |page=1079 |bibcode=2021FrEaS...9.1079L |doi=10.3389/feart.2021.780343 |doi-access=free}}</ref> The opportunists that established themselves along the Tethyan coastline were primarily spore-producers.<ref name="BonisAndKurschner2012">{{Cite journal |last1=Bonis |first1=Nina R. |last2=Kürschner |first2=Wolfram M. |date=2012 |title=Vegetation history, diversity patterns, and climate change across the Triassic/Jurassic boundary |url=https://www.cambridge.org/core/product/identifier/S0094837300000567/type/journal_article |journal=[[Paleobiology (journal)|Paleobiology]] |language=en |volume=38 |issue=2 |pages=240–264 |doi=10.1666/09071.1 |issn=0094-8373 |access-date=28 March 2024 |via=Cambridge Core|url-access=subscription }}</ref> In the Eiberg Basin of the [[Northern Calcareous Alps]], there was a very rapid palynomorph turnover.<ref>{{cite journal |last1=Bonis |first1=N. R. |last2=Kürschner |first2=W. M. |last3=Krystyn |first3=L. |date=September 2009 |title=A detailed palynological study of the Triassic–Jurassic transition in key sections of the Eiberg Basin (Northern Calcareous Alps, Austria) |url=https://www.sciencedirect.com/science/article/abs/pii/S0034666709000633 |journal=[[Review of Palaeobotany and Palynology]] |volume=156 |issue=3–4 |pages=376–400 |bibcode=2009RPaPa.156..376B |doi=10.1016/j.revpalbo.2009.04.003 |access-date=28 May 2023|url-access=subscription }}</ref> The palynological and palaeobotanical succession in Queensland shows a ''Classopolis'' bloom after the TJME.<ref>{{Cite journal |last1=de Jersey |first1=Noel J. |last2=McKellar |first2=John L. |date=15 January 2013 |title=The palynology of the Triassic–Jurassic transition in southeastern Queensland, Australia, and correlation with New Zealand |url=http://www.tandfonline.com/doi/abs/10.1080/01916122.2012.718609 |journal=Palynology |language=en |volume=37 |issue=1 |pages=77–114 |doi=10.1080/01916122.2012.718609 |issn=0191-6122 |access-date=19 June 2024 |via=Taylor and Francis Online|url-access=subscription }}</ref> [[Polyploidy]] may have been an important factor that mitigated a conifer species' risk of going extinct.<ref>{{cite journal |last1=Kürschner |first1=Wolfram M. |last2=Batenburg |first2=Sietske J. |last3=Mander |first3=Luke |date=7 October 2013 |title=Aberrant Classopollis pollen reveals evidence for unreduced (2n) pollen in the conifer family Cheirolepidiaceae during the Triassic–Jurassic transition |journal=[[Proceedings of the Royal Society B: Biological Sciences]] |volume=280 |issue=1768 |pages=1–8 |doi=10.1098/rspb.2013.1708 |pmc=3757988 |pmid=23926159}}</ref>
Edit summary
(Briefly describe your changes)
By publishing changes, you agree to the
Terms of Use
, and you irrevocably agree to release your contribution under the
CC BY-SA 4.0 License
and the
GFDL
. You agree that a hyperlink or URL is sufficient attribution under the Creative Commons license.
Cancel
Editing help
(opens in new window)