Open main menu
Home
Random
Recent changes
Special pages
Community portal
Preferences
About Wikipedia
Disclaimers
Incubator escapee wiki
Search
User menu
Talk
Dark mode
Contributions
Create account
Log in
Editing
Trigonometric functions
(section)
Warning:
You are not logged in. Your IP address will be publicly visible if you make any edits. If you
log in
or
create an account
, your edits will be attributed to your username, along with other benefits.
Anti-spam check. Do
not
fill this in!
== Right-angled triangle definitions == [[File:TrigonometryTriangle.svg|thumb|In this right triangle, denoting the measure of angle BAC as A: {{math|1=sin ''A'' = {{sfrac|''a''|''c''}}}}; {{math|1=cos ''A'' = {{sfrac|''b''|''c''}}}}; {{math|1=tan ''A'' = {{sfrac|''a''|''b''}}}}.]] [[File:TrigFunctionDiagram.svg|thumb|Plot of the six trigonometric functions, the unit circle, and a line for the angle {{math|1=''θ'' = 0.7 radians}}. The points labeled {{color|#D00|1}}, {{color|#02D|Sec(''θ'')}}, {{color|#0D1|Csc(''θ'')}} represent the length of the line segment from the origin to that point. {{color|#D00|Sin(''θ'')}}, {{color|#02D|Tan(''θ'')}}, and {{color|#0D1|1}} are the heights to the line starting from the {{mvar|x}}-axis, while {{color|#D00|Cos(''θ'')}}, {{color|#02D|1}}, and {{color|#0D1|Cot(''θ'')}} are lengths along the {{mvar|x}}-axis starting from the origin.]] If the acute angle {{mvar|θ}} is given, then any right triangles that have an angle of {{mvar|θ}} are [[similarity (geometry)|similar]] to each other. This means that the ratio of any two side lengths depends only on {{mvar|θ}}. Thus these six ratios define six functions of {{mvar|θ}}, which are the trigonometric functions. In the following definitions, the [[hypotenuse]] is the length of the side opposite the right angle, ''opposite'' represents the side opposite the given angle {{mvar|θ}}, and ''adjacent'' represents the side between the angle {{mvar|θ}} and the right angle.<ref>{{harvtxt|Protter|Morrey|1970|pp=APP-2, APP-3}}</ref><ref>{{Cite web|title=Sine, Cosine, Tangent|url=https://www.mathsisfun.com/sine-cosine-tangent.html|access-date=29 August 2020|website=www.mathsisfun.com}}</ref> {| | style="padding-left: 2em; padding-right: 2em; | ;sine: <math>\sin \theta = \frac \mathrm{opposite}\mathrm{hypotenuse}</math> | style="padding-left: 2em; padding-right: 2em; | ;cosecant: <math>\csc \theta = \frac \mathrm{hypotenuse}\mathrm{opposite}</math> |- | style="padding-left: 2em; padding-right: 2em; | ;cosine: <math>\cos \theta = \frac \mathrm{adjacent}\mathrm{hypotenuse}</math> | style="padding-left: 2em; padding-right: 2em; | ;secant: <math>\sec \theta = \frac \mathrm{hypotenuse}\mathrm{adjacent}</math> |- | style="padding-left: 2em; padding-right: 2em; | ;tangent: <math>\tan \theta = \frac \mathrm{opposite}\mathrm{adjacent}</math> | style="padding-left: 2em; padding-right: 2em; | ;cotangent: <math>\cot \theta = \frac \mathrm{adjacent}\mathrm{opposite}</math> |} [[mnemonics in trigonometry|Various mnemonics]] can be used to remember these definitions. In a right-angled triangle, the sum of the two acute angles is a right angle, that is, {{math|90°}} or {{math|{{sfrac|π|2}} [[radian]]s}}. Therefore <math>\sin(\theta)</math> and <math>\cos(90^\circ - \theta)</math> represent the same ratio, and thus are equal. This identity and analogous relationships between the other trigonometric functions are summarized in the following table. [[File:Periodic sine.svg|thumb|'''Top:''' Trigonometric function {{math|sin ''θ''}} for selected angles {{math|''θ''}}, {{math|{{pi}} − ''θ''}}, {{math|{{pi}} + ''θ''}}, and {{math|2{{pi}} − ''θ''}} in the four quadrants.<br>'''Bottom:''' Graph of sine versus angle. Angles from the top panel are identified.]] {| class="wikitable sortable" |+ Summary of relationships between trigonometric functions<ref>{{harvtxt|Protter|Morrey|1970|p=APP-7}}</ref> |- ! rowspan=2 | Function ! rowspan=2 | Description ! colspan=2 | [[List of trigonometric identities|Relationship]] |- ! using [[radian]]s ! using [[Degree (angle)|degree]]s |- ! sine |align=center|{{math|{{sfrac|opposite|hypotenuse}}}} | <math>\sin \theta = \cos\left(\frac{\pi}{2} - \theta \right) = \frac{1}{\csc \theta}</math> | <math>\sin x = \cos\left(90^\circ - x \right) = \frac{1}{\csc x}</math> |- ! cosine |align=center|{{math|{{sfrac|adjacent|hypotenuse}}}} | <math>\cos \theta = \sin\left(\frac{\pi}{2} - \theta \right) = \frac{1}{\sec \theta}\,</math> | <math>\cos x = \sin\left(90^\circ - x \right) = \frac{1}{\sec x}\,</math> |- ! tangent |align=center|{{math|{{sfrac|opposite|adjacent}}}} | <math>\tan \theta = \frac{\sin \theta}{\cos \theta} = \cot\left(\frac{\pi}{2} - \theta \right) = \frac{1}{\cot \theta} </math> | <math>\tan x = \frac{\sin x}{\cos x} = \cot\left(90^\circ - x \right) = \frac{1}{\cot x} </math> |- ! cotangent |align=center|{{math|{{sfrac|adjacent|opposite}}}} | <math>\cot \theta = \frac{\cos \theta}{\sin \theta} = \tan\left(\frac{\pi}{2} - \theta \right) = \frac{1}{\tan \theta} </math> | <math>\cot x = \frac{\cos x}{\sin x} = \tan\left(90^\circ - x \right) = \frac{1}{\tan x} </math> |- ! secant |align=center|{{math|{{sfrac|hypotenuse|adjacent}}}} | <math>\sec \theta = \csc\left(\frac{\pi}{2} - \theta \right) = \frac{1}{\cos \theta} </math> | <math>\sec x = \csc\left(90^\circ - x \right) = \frac{1}{\cos x} </math> |- ! cosecant |align=center|{{math|{{sfrac|hypotenuse|opposite}}}} | <math>\csc \theta = \sec\left(\frac{\pi}{2} - \theta \right) = \frac{1}{\sin \theta} </math> | <math>\csc x = \sec\left(90^\circ - x \right) = \frac{1}{\sin x} </math> |}
Edit summary
(Briefly describe your changes)
By publishing changes, you agree to the
Terms of Use
, and you irrevocably agree to release your contribution under the
CC BY-SA 4.0 License
and the
GFDL
. You agree that a hyperlink or URL is sufficient attribution under the Creative Commons license.
Cancel
Editing help
(opens in new window)