Open main menu
Home
Random
Recent changes
Special pages
Community portal
Preferences
About Wikipedia
Disclaimers
Incubator escapee wiki
Search
User menu
Talk
Dark mode
Contributions
Create account
Log in
Editing
Twelfth root of two
(section)
Warning:
You are not logged in. Your IP address will be publicly visible if you make any edits. If you
log in
or
create an account
, your edits will be attributed to your username, along with other benefits.
Anti-spam check. Do
not
fill this in!
==The equal-tempered chromatic scale== A [[interval (music)|musical interval]] is a ratio of frequencies and the [[Equal temperament|equal-tempered]] chromatic scale divides the [[octave]] (which has a ratio of 2:1) into twelve equal parts. Each note has a frequency that is 2{{sup|{{frac|1|12}}}} times that of the one below it.<ref>{{Cite web |title=Equal temperament {{!}} Definition & Facts {{!}} Britannica |url=https://www.britannica.com/art/equal-temperament |access-date=2024-06-03 |website=www.britannica.com |language=en}}</ref> Applying this value successively to the tones of a chromatic scale, starting from '''A''' above [[middle C|middle '''C''']] (known as [[A440 (pitch standard)|A<sub>4</sub>]]) with a frequency of 440 Hz, produces the following sequence of [[pitch (music)|pitch]]es: {| class="wikitable" style="text-align: center;" ! Note ! Standard interval name(s)<br />relating to A 440 ! Frequency<br /> (Hz) ! Multiplier ! Coefficient<br />(to six decimal places) ! {{abbr|Just intonation|for comparison}}<br /> ratio !{{abbr|Difference|between equal-tempered scale and just intonation}}<br />(Β± [[Cent_(music)|cents]]) |- | A || [[Unison]] || 440.00 || 2{{sup|{{frac|0|12}}}} || {{val|1.000000}} |1 |align=right|0 |- | A{{music|#}}/B{{music|b}} || [[Minor second|Minor second/Half step/Semitone]] || 466.16 || 2{{sup|{{frac|1|12}}}} || {{val|1.059463}} |β {{frac|16|15}} <!-- +1.2% --> |align=right|+11.73 |- | B || [[Major second|Major second/Full step/Whole tone]] || 493.88 || 2{{sup|{{frac|2|12}}}} || {{val|1.122462}} |β {{frac|9|8}} <!-- +0.3% --> |align=right| β3.91 |- | C || [[Minor third]] || 523.25 || 2{{sup|{{frac|3|12}}}} || {{val|1.189207}} |β {{frac|6|5}} <!-- +1.1% --> |align=right| +15.64 |- | C{{music|#}}/D{{music|b}} || [[Major third]] || 554.37 || 2{{sup|{{frac|4|12}}}} || [[cube root of two#In music theory|{{val|1.259921}}]] |β {{frac|5|4}} <!-- -1.0% --> |align=right| β13.69 |- | D || [[Perfect fourth]] || 587.33 || 2{{sup|{{frac|5|12}}}} || {{val|1.334839}} |β {{frac|4|3}} <!-- -0.2% --> |align=right| β1.96 |- | D{{music|#}}/E{{music|b}} || [[Tritone|Augmented fourth/Diminished fifth/Tritone]] || 622.25 || 2{{sup|{{frac|6|12}}}} || [[square root of two|{{val|1.414213}}]] |β {{frac|7|5}} <!-- -1.4% --> |align=right| +17.49 |- | E || [[Perfect fifth]] || 659.26 || 2{{sup|{{frac|7|12}}}} || {{val|1.498307}} |β {{frac|3|2}} <!-- +0.2% --> |align=right| +1.96 |- | F || [[Minor sixth]] || 698.46 || 2{{sup|{{frac|8|12}}}} || {{val|1.587401}} |β {{frac|8|5}} <!-- +1.3% --> |align=right| +13.69 |- | F{{music|#}}/G{{music|b}} || [[Major sixth]] || 739.99 || 2{{sup|{{frac|9|12}}}} || {{val|1.681792}} |β {{frac|5|3}} <!-- +1.5% --> |align=right| β15.64 |- | G || [[Minor seventh]] || 783.99 || 2{{sup|{{frac|10|12}}}} || {{val|1.781797}} |β {{frac|16|9}} <!-- +1.8% --> |align=right| +3.91 |- | G{{music|#}}/A{{music|b}} || [[Major seventh]] || 830.61 || 2{{sup|{{frac|11|12}}}} || {{val|1.887748}} |β {{frac|15|8}} <!-- -1.3% --> |align=right| β11.73 |- | A || [[Octave]] || 880.00 || 2{{sup|{{frac|12|12}}}} || {{val|2.000000}} |2 |align=right|0 |} The final '''A''' (A<sub>5</sub>: 880 Hz) is exactly twice the frequency of the lower '''A''' (A<sub>4</sub>: 440 Hz), that is, one octave higher. ===Other tuning scales=== Other tuning scales use slightly different interval ratios: * The [[Just intonation|just]] or [[Pythagorean tuning|Pythagorean]] perfect fifth is 3/2, and the difference between the equal tempered perfect fifth and the just is a [[grad (musical interval)|grad]], the twelfth root of the [[Pythagorean comma]] (<math display=inline>\sqrt[12]{531441/524288}</math>). * The equal tempered [[BohlenβPierce scale]] uses the interval of the thirteenth root of three (<math display=inline>\sqrt[13]{3}</math>). * Stockhausen's ''[[Studie II]]'' (1954) makes use of the twenty-fifth root of five (<math display=inline>\sqrt[25]{5}</math>), a compound major third divided into 5Γ5 parts. * The [[delta scale]] is based on β<math display=inline>\sqrt[50]{3/2}</math>. * The [[gamma scale]] is based on β<math display=inline>\sqrt[20]{3/2}</math>. * The [[beta scale]] is based on β<math display=inline>\sqrt[11]{3/2}</math>. * The [[alpha scale]] is based on β<math display=inline>\sqrt[9]{3/2}</math>.
Edit summary
(Briefly describe your changes)
By publishing changes, you agree to the
Terms of Use
, and you irrevocably agree to release your contribution under the
CC BY-SA 4.0 License
and the
GFDL
. You agree that a hyperlink or URL is sufficient attribution under the Creative Commons license.
Cancel
Editing help
(opens in new window)