Open main menu
Home
Random
Recent changes
Special pages
Community portal
Preferences
About Wikipedia
Disclaimers
Incubator escapee wiki
Search
User menu
Talk
Dark mode
Contributions
Create account
Log in
Editing
Variable speed of light
(section)
Warning:
You are not logged in. Your IP address will be publicly visible if you make any edits. If you
log in
or
create an account
, your edits will be attributed to your username, along with other benefits.
Anti-spam check. Do
not
fill this in!
=== Background === Einstein's [[equivalence principle]], on which [[general relativity]] is founded, requires that in any local, freely falling reference frame, the speed of light is always the same.<ref>{{Cite book|last=Will|first=Clifford M.|author-link=Clifford Martin Will |url=https://books.google.com/books?id=gf1uDwAAQBAJ|title=Theory and Experiment in Gravitational Physics|date=2018-09-30|publisher=Cambridge University Press|isbn=978-1-108-57749-6|pages=238|language=en}}</ref><ref>{{Cite book|last1=Misner |first1=Charles W. |title=Gravitation |title-link=Gravitation (book) |last2=Thorne |first2=Kip S. |last3=Wheeler |first3=John Archibald |author-link1=Charles W. Misner |author-link2=Kip Thorne |author-link3=John Archibald Wheeler |date=2017-10-03 |publisher=Princeton University Press |isbn=978-1-4008-8909-9 |pages=297 |language=en}}</ref> This leaves open the possibility, however, that an inertial observer inferring the apparent speed of light in a distant region might calculate a different value. Spatial variation of the speed of light in a gravitational potential as measured against a distant observer's time reference is implicitly present in general relativity.<ref>{{cite book|first=S. |last=Weinberg|author-link=Steven Weinberg |url=https://archive.org/details/gravitationcosmo00stev_0|title=Gravitation and Cosmology|publisher=Wiley|year=1972|location=London|page=[https://archive.org/details/gravitationcosmo00stev_0/page/222 222]|isbn=9780471925675|url-access=registration}}</ref> The apparent speed of light will change in a gravity field and, in particular, go to zero at an event horizon as viewed by a distant observer.<ref>{{cite book|last1=Bergmann|first1=Peter|author-link=Peter Bergmann |title=The Riddle of Gravitation|url=https://archive.org/details/riddlegravitatio00berg_292|url-access=limited|date=1992|publisher=Dover|location=New York|isbn=978-0-486-27378-5|page=[https://archive.org/details/riddlegravitatio00berg_292/page/n116 94]|edition=1st reprint from 1968}}</ref> In deriving the [[gravitational redshift]] due to a spherically symmetric massive body, a radial speed of light ''dr''/''dt'' can be defined in [[Schwarzschild coordinates]], with ''t'' being the time recorded on a stationary clock at infinity. The result is : <math> \frac{dr}{dt} = 1 - \frac{2m}{r}, </math> where ''m'' is ''MG''/''c''<sup>2</sup> and where [[natural units]] are used such that ''c''<sub>0</sub> is equal to one.<ref>{{cite book|last1=Tolman|first1=Richard|author-link=Richard Tolman |title=Relativity Cosmology and Thermodynamics|date=1958|publisher=Oxford|location=Oxford UK|page=212|edition=1st reprint from 1934}}</ref><ref>{{Cite book |last=Stavrov |first=Iva |title=Curvature of Space and Time, with an Introduction to Geometric Analysis |title-link=Curvature of Space and Time, with an Introduction to Geometric Analysis |date=2020 |publisher=American Mathematical Society |isbn=978-1-4704-6313-7 |location=Providence, Rhode Island |oclc=1202475208 |page=179}}</ref>
Edit summary
(Briefly describe your changes)
By publishing changes, you agree to the
Terms of Use
, and you irrevocably agree to release your contribution under the
CC BY-SA 4.0 License
and the
GFDL
. You agree that a hyperlink or URL is sufficient attribution under the Creative Commons license.
Cancel
Editing help
(opens in new window)