Open main menu
Home
Random
Recent changes
Special pages
Community portal
Preferences
About Wikipedia
Disclaimers
Incubator escapee wiki
Search
User menu
Talk
Dark mode
Contributions
Create account
Log in
Editing
Vector potential
(section)
Warning:
You are not logged in. Your IP address will be publicly visible if you make any edits. If you
log in
or
create an account
, your edits will be attributed to your username, along with other benefits.
Anti-spam check. Do
not
fill this in!
==Theorem== Let <math display="block">\mathbf{v} : \R^3 \to \R^3 </math> be a [[solenoidal vector field]] which is twice [[smooth function|continuously differentiable]]. Assume that <math>\mathbf{v}(\mathbf{x})</math> decreases at least as fast as <math> 1/\|\mathbf{x}\| </math> for <math> \| \mathbf{x}\| \to \infty </math>. Define <math display="block"> \mathbf{A} (\mathbf{x}) = \frac{1}{4 \pi} \int_{\mathbb R^3} \frac{ \nabla_y \times \mathbf{v} (\mathbf{y})}{\left\|\mathbf{x} -\mathbf{y} \right\|} \, d^3\mathbf{y} </math> where <math>\nabla_y \times</math> denotes curl with respect to variable <math>\mathbf{y}</math>. Then <math>\mathbf{A}</math> is a vector potential for <math>\mathbf{v}</math>. That is, <math display="block">\nabla \times \mathbf{A} =\mathbf{v}. </math> The integral domain can be restricted to any simply connected region <math>\mathbf{\Omega}</math>. That is, <math>\mathbf{A'}</math> also is a vector potential of <math>\mathbf{v}</math>, where <math display="block"> \mathbf{A'} (\mathbf{x}) = \frac{1}{4 \pi} \int_{\Omega} \frac{ \nabla_y \times \mathbf{v} (\mathbf{y})}{\left\|\mathbf{x} -\mathbf{y} \right\|} \, d^3\mathbf{y}. </math> A generalization of this theorem is the [[Helmholtz decomposition]] theorem, which states that any vector field can be decomposed as a sum of a solenoidal vector field and an [[irrotational vector field]]. By [[analogy]] with the [[Biot-Savart law]], <math>\mathbf{A''}(\mathbf{x})</math> also qualifies as a vector potential for <math>\mathbf{v}</math>, where :<math>\mathbf{A''}(\mathbf{x}) =\int_\Omega \frac{\mathbf{v}(\mathbf{y}) \times (\mathbf{x} - \mathbf{y})}{4 \pi |\mathbf{x} - \mathbf{y}|^3} d^3 \mathbf{y}</math>. Substituting <math>\mathbf{j}</math> ([[current density]]) for <math>\mathbf{v}</math> and <math>\mathbf{H}</math> ([[H-field]]) for <math>\mathbf{A}</math>, yields the Biot-Savart law. Let <math>\mathbf{\Omega}</math> be a [[star domain]] centered at the point <math>\mathbf{p}</math>, where <math>\mathbf{p}\in \R^3</math>. Applying [[Poincaré's lemma]] for [[differential forms]] to vector fields, then <math>\mathbf{A'''}(\mathbf{x})</math> also is a vector potential for <math>\mathbf{v}</math>, where <math>\mathbf{A'''}(\mathbf{x}) =\int_0^1 s ((\mathbf{x}-\mathbf{p})\times ( \mathbf{v}( s \mathbf{x} + (1-s) \mathbf{p} ))\ ds </math>
Edit summary
(Briefly describe your changes)
By publishing changes, you agree to the
Terms of Use
, and you irrevocably agree to release your contribution under the
CC BY-SA 4.0 License
and the
GFDL
. You agree that a hyperlink or URL is sufficient attribution under the Creative Commons license.
Cancel
Editing help
(opens in new window)