Open main menu
Home
Random
Recent changes
Special pages
Community portal
Preferences
About Wikipedia
Disclaimers
Incubator escapee wiki
Search
User menu
Talk
Dark mode
Contributions
Create account
Log in
Editing
Wannier function
(section)
Warning:
You are not logged in. Your IP address will be publicly visible if you make any edits. If you
log in
or
create an account
, your edits will be attributed to your username, along with other benefits.
Anti-spam check. Do
not
fill this in!
=== Properties === On the basis of this definition, the following properties can be proven to hold:<ref name=Bohm>{{cite book |title=The Geometric Phase in Quantum Systems |author=A Bohm, A Mostafazadeh, H Koizumi, Q Niu and J Zqanziger |isbn=978-3-540-00031-0 |publisher=Springer |year=2003 |pages=Β§12.5, p. 292 ff|doi=10.1007/978-3-662-10333-3 |url=https://cds.cern.ch/record/737299 }}</ref> * For any lattice vector ''' R' ''', :<math>\phi_{\mathbf{R}}(\mathbf{r}) = \phi_{\mathbf{R}+\mathbf{R}'}(\mathbf{r}+\mathbf{R}')</math> In other words, a Wannier function only depends on the quantity ('''r''' β '''R'''). As a result, these functions are often written in the alternative notation :<math>\phi(\mathbf{r}-\mathbf{R}) := \phi_{\mathbf{R}}(\mathbf{r})</math> * The Bloch functions can be written in terms of Wannier functions as follows: :<math>\psi_{\mathbf{k}}(\mathbf{r}) = \frac{1}{\sqrt{N}} \sum_{\mathbf{R}} e^{i\mathbf{k}\cdot\mathbf{R}} \phi_{\mathbf{R}}(\mathbf{r})</math>, where the sum is over each lattice vector '''R''' in the crystal. * The set of wavefunctions <math>\phi_{\mathbf{R}}</math> is an [[orthonormal basis]] for the band in question. :<math>\begin{align} \int_\text{crystal} \phi_{\mathbf{R}}(\mathbf{r})^* \phi_{\mathbf{R'}}(\mathbf{r}) d^3\mathbf{r} & = \frac{1}{N} \sum_{\mathbf{k,k'}}\int_\text{crystal} e^{i\mathbf{k}\cdot\mathbf{R}} \psi_{\mathbf{k}}(\mathbf{r})^* e^{-i\mathbf{k'}\cdot\mathbf{R'}} \psi_{\mathbf{k'}}(\mathbf{r}) d^3\mathbf{r} \\ & = \frac{1}{N} \sum_{\mathbf{k,k'}} e^{i\mathbf{k}\cdot\mathbf{R}} e^{-i\mathbf{k'}\cdot\mathbf{R'}} \delta_{\mathbf{k,k'}} \\ & = \frac{1}{N} \sum_{\mathbf{k}} e^{i\mathbf{k}\cdot\mathbf{(R-R')}} \\ & =\delta_{\mathbf{R,R'}} \end{align} </math> Wannier functions have been extended to nearly periodic potentials as well.<ref name=Kohn0>[http://www.physast.uga.edu/~mgeller/4.pdf MP Geller and W Kohn] ''Theory of generalized Wannier functions for nearly periodic potentials'' Physical Review B 48, 1993</ref>
Edit summary
(Briefly describe your changes)
By publishing changes, you agree to the
Terms of Use
, and you irrevocably agree to release your contribution under the
CC BY-SA 4.0 License
and the
GFDL
. You agree that a hyperlink or URL is sufficient attribution under the Creative Commons license.
Cancel
Editing help
(opens in new window)