Open main menu
Home
Random
Recent changes
Special pages
Community portal
Preferences
About Wikipedia
Disclaimers
Incubator escapee wiki
Search
User menu
Talk
Dark mode
Contributions
Create account
Log in
Editing
Waring's problem
(section)
Warning:
You are not logged in. Your IP address will be publicly visible if you make any edits. If you
log in
or
create an account
, your edits will be attributed to your username, along with other benefits.
Anti-spam check. Do
not
fill this in!
==The number ''g''(''k'')== For every <math>k</math>, let <math>g(k)</math> denote the minimum number <math>s</math> of <math>k</math>th powers of naturals needed to represent all positive integers. Every positive integer is the sum of one first power, itself, so <math>g(1) = 1</math>. Some simple computations show that 7 requires 4 squares, 23 requires 9 cubes,<ref>Remember we restrict ourselves to ''positive'' natural numbers. With general integers, it is not hard to write 23 as the sum of 4 cubes, e.g. <math>2^3 + 2^3 + 2^3 + (-1)^3</math> or <math>29^3 + 17^3 + 8^3 + (-31)^3</math>.</ref> and 79 requires 19 fourth powers; these examples show that <math>g(2) \ge 4</math>, <math>g(3) \ge 9</math>, and <math>g(4) \ge 19</math>. Waring conjectured that these lower bounds were in fact exact values. [[Lagrange's four-square theorem]] of 1770 states that every natural number is the sum of at most four squares. Since three squares are not enough, this theorem establishes <math>g(2) = 4</math>. Lagrange's four-square theorem was conjectured in [[Claude Gaspard Bachet de Méziriac|Bachet]]'s 1621 edition of [[Diophantus]]'s ''[[Arithmetica]]''; [[Pierre de Fermat|Fermat]] claimed to have a proof, but did not publish it.<ref>{{cite book | last = Dickson | first = Leonard Eugene | author-link = Leonard Eugene Dickson | title = History of the Theory of Numbers |volume = II: Diophantine Analysis | publisher = [[Carnegie Institution of Washington|Carnegie Institute of Washington]] | year = 1920 | chapter = Chapter VIII}}</ref> Over the years various bounds were established, using increasingly sophisticated and complex proof techniques. For example, [[Joseph Liouville|Liouville]] showed that <math>g(4)</math> is at most 53. [[G. H. Hardy|Hardy]] and [[John Edensor Littlewood|Littlewood]] showed that all sufficiently large numbers are the sum of at most 19 fourth powers. That <math>g(3) = 9</math> was established from 1909 to 1912 by [[Arthur Wieferich|Wieferich]]<ref>{{cite journal | last = Wieferich | first = Arthur | author-link = Arthur Wieferich | title = Beweis des Satzes, daß sich eine jede ganze Zahl als Summe von höchstens neun positiven Kuben darstellen läßt |language = de | journal = Mathematische Annalen | volume = 66 | issue = 1 | pages = 95–101 | year = 1909 | url = http://dz-srv1.sub.uni-goettingen.de/sub/digbib/loader?did=D38240 | doi = 10.1007/BF01450913| s2cid = 121386035 }}</ref> and [[Aubrey J. Kempner|A. J. Kempner]],<ref>{{cite journal | last = Kempner | first = Aubrey | title = Bemerkungen zum Waringschen Problem | language = de | journal = Mathematische Annalen | volume = 72 | issue = 3 | pages = 387–399 | year=1912 | url = http://dz-srv1.sub.uni-goettingen.de/sub/digbib/loader?did=D28751 | doi = 10.1007/BF01456723| s2cid = 120101223 }}</ref> <math>g(4) = 19</math> in 1986 by [[Ramachandran Balasubramanian|R. Balasubramanian]], F. Dress, and [[Jean-Marc Deshouillers|J.-M. Deshouillers]],<ref>{{cite journal | last1=Balasubramanian | first1=Ramachandran | last2=Deshouillers | first2=Jean-Marc | last3=Dress | first3=François | title=Problème de Waring pour les bicarrés. I. Schéma de la solution | language=fr | trans-title=Waring's problem for biquadrates. I. Sketch of the solution | journal=Comptes Rendus de l'Académie des Sciences, Série I | volume=303 | year=1986 | issue=4 | pages=85–88 | mr=0853592}}</ref><ref>{{cite journal | last1=Balasubramanian | first1=Ramachandran | last2=Deshouillers | first2=Jean-Marc | last3=Dress | first3=François | title=Problème de Waring pour les bicarrés. II. Résultats auxiliaires pour le théorème asymptotique | language=fr | trans-title=Waring's problem for biquadrates. II. Auxiliary results for the asymptotic theorem | journal=Comptes Rendus de l'Académie des Sciences, Série I | volume=303 |year=1986 | issue= 5 | pages=161–163 | mr=0854724}}</ref> <math>g(5) = 37</math> in 1964 by [[Chen Jingrun]],<ref name="ChenWaring5">{{cite journal |last=Chen |first= Jing-run|date=1964 |title=Waring's problem for g(5)=37 |journal=Scientia Sinica |volume=13 |pages=1547–1568 |language=Chinese}}</ref> and <math>g(6) = 73</math> in 1940 by [[Subbayya Sivasankaranarayana Pillai|Pillai]].<ref>{{cite journal | last1 = Pillai | first1 = S. S. | title = On Waring's problem ''g''(6) = 73 | journal = Proc. Indian Acad. Sci. | volume = 12 | year=1940 | pages = 30–40 | mr=0002993| doi = 10.1007/BF03170721 | s2cid = 185097940 }}</ref> Let <math>\lfloor x\rfloor</math> and <math>\{x\}</math> respectively denote the [[integral part|integral]] and [[fractional part]] of a positive real number <math>x</math>. Given the number <math>c = 2^k \lfloor(3/2)^k\rfloor - 1 < 3^k</math>, only <math>2^k</math> and <math>1^k</math> can be used to represent <math>c</math>; the most economical representation requires <math>\lfloor(3/2)^k\rfloor - 1</math> terms of <math>2^k</math> and <math>2^k - 1</math> terms of <math>1^k</math>. It follows that <math>g(k)</math> is at least as large as <math>2^k + \lfloor(3/2)^k\rfloor - 2</math>. This was noted by [[Johann Euler|J. A. Euler]], the son of [[Leonhard Euler]], in about 1772.<ref>[[Euler|L. Euler]], [https://archive.org/stream/leonhardieuleri00petrgoog#page/n219/mode/2up"Opera posthuma"] (1), 203–204 (1862).</ref> The Ideal Waring Theorem would be an unconditional strengthening of Euler's observation: : Define: g*(k) <math> = 2^k + \lfloor(3/2)^k\rfloor - 2</math>. Then g(k) = g*(k). Work by [[Leonard Eugene Dickson|Dickson]] and [[Subbayya Sivasankaranarayana Pillai|Pillai]] in 1936, [[R. K. Rubugunday|Rubugunday]]<ref name="Rubugunday">{{cite journal | last=Rubugunday | first=R.K. | title=On g(k) in Waring's Problem | journal= Journal of the Indian Mathematical Society | volume=6 | date=1942 | pages=192–198}}</ref> in 1942, [[Ivan M. Niven|Niven]] in 1944<ref>{{cite journal | last = Niven | first = Ivan M. |author-link = Ivan M. Niven |title = An unsolved case of the Waring problem |journal = [[American Journal of Mathematics]] |volume = 66 |pages = 137–143 |year = 1944 |issue = 1 |doi = 10.2307/2371901 |publisher = The Johns Hopkins University Press |jstor = 2371901 | mr=0009386}}</ref> and many others has proved that : <math> g(k) = \begin{cases} 2^k + \lfloor(3/2)^k\rfloor - 2 &\text{if}\quad 2^k \{(3/2)^k\} + \lfloor(3/2)^k\rfloor \le 2^k, \\ 2^k + \lfloor(3/2)^k\rfloor + \lfloor(4/3)^k\rfloor - 2 &\text{if}\quad 2^k \{(3/2)^k\} + \lfloor(3/2)^k\rfloor > 2^k \text{ and } \lfloor(4/3)^k\rfloor \lfloor(3/2)^k\rfloor + \lfloor(4/3)^k\rfloor + \lfloor(3/2)^k\rfloor = 2^k, \\ 2^k + \lfloor(3/2)^k\rfloor + \lfloor(4/3)^k\rfloor - 3 &\text{if}\quad 2^k \{(3/2)^k\} + \lfloor(3/2)^k\rfloor > 2^k \text{ and } \lfloor(4/3)^k\rfloor \lfloor(3/2)^k\rfloor + \lfloor(4/3)^k\rfloor + \lfloor(3/2)^k\rfloor > 2^k. \end{cases} </math> Dickson's 1936 proof<ref name="Dickson1936">{{cite journal | last=Dickson | first=L. E. | title=Solution of Waring's Problem | journal=American Journal of Mathematics | volume=58 | issue=3 | date=1936 | doi=10.2307/2370970 | pages=530–535| jstor=2370970 }}</ref> applies when k > 6, and Pillai's<ref name="Pillai1936">{{cite journal | last=Pillai | first=S.S. | title=On Waring's Problem | journal= Journal of the Indian Mathematical Society | volume=2 | date=1936 | pages=16–44}}</ref> when k > 7, leaving g(4), g(5), and g(6) to be resolved as documented above. No value of <math>k</math> is known for which <math>2^k\{(3/2)^k\} + \lfloor(3/2)^k\rfloor > 2^k</math>. [[Kurt Mahler|Mahler]]<ref>{{cite journal | last1 = Mahler | first1 = Kurt | year =1957 | title = On the fractional parts of the powers of a rational number II | journal = [[Mathematika]] | volume = 4 | issue = 2 | pages = 122–124 | doi=10.1112/s0025579300001170 |mr=0093509}}</ref> proved that there can only be a finite number of such <math>k</math>, and Kubina and Wunderlich<ref>{{cite journal | last1=Kubina | first1=Jeffrey M. | last2=Wunderlich | first2=Marvin C. | title=Extending Waring's conjecture to 471,600,000 | journal=[[Math. Comp.]] | volume=55 | pages=815–820 | year=1990 | issue=192 | mr=1035936 | doi=10.2307/2008448 | jstor=2008448 | bibcode=1990MaCom..55..815K }}</ref> have shown that any such <math>k</math> must satisfy <math>k > 471\,600\,000</math>, extending work of Stemmler.<ref name="Stemmler 1964">{{cite journal | last=Stemmler | first=Rosemarie M. | title=The ideal Waring theorem for exponents 401-200,000 | journal=Mathematics of Computation | volume=18 | issue=85 | date=1964 | issn=0025-5718 | doi=10.1090/S0025-5718-1964-0159803-X | doi-access=free | pages=144–146 | url=https://www.ams.org/mcom/1964-18-085/S0025-5718-1964-0159803-X/S0025-5718-1964-0159803-X.pdf | access-date=4 February 2025}}</ref> Thus it is conjectured that this never happens, that is, <math>g(k) = 2^k + \lfloor(3/2)^k\rfloor - 2</math> for every positive integer <math>k</math>. The first few values of <math>g(k)</math> are: : 1, 4, 9, 19, 37, 73, 143, 279, 548, 1079, 2132, 4223, 8384, 16673, 33203, 66190, 132055, 263619, 526502, 1051899, ... {{OEIS|A002804}}.
Edit summary
(Briefly describe your changes)
By publishing changes, you agree to the
Terms of Use
, and you irrevocably agree to release your contribution under the
CC BY-SA 4.0 License
and the
GFDL
. You agree that a hyperlink or URL is sufficient attribution under the Creative Commons license.
Cancel
Editing help
(opens in new window)