Open main menu
Home
Random
Recent changes
Special pages
Community portal
Preferences
About Wikipedia
Disclaimers
Incubator escapee wiki
Search
User menu
Talk
Dark mode
Contributions
Create account
Log in
Editing
Weierstrass elliptic function
(section)
Warning:
You are not logged in. Your IP address will be publicly visible if you make any edits. If you
log in
or
create an account
, your edits will be attributed to your username, along with other benefits.
Anti-spam check. Do
not
fill this in!
==Definition== [[File:Weierstrass elliptic function P.png|thumb|200px|Visualization of the <math>\wp</math>-function with invariants <math>g_2=1+i</math> and <math>g_3=2-3i</math> in which white corresponds to a pole, black to a zero.]] Let <math>\omega_1,\omega_2\in\mathbb{C}</math> be two [[complex number]]s that are [[Linear independence|linearly independent]] over <math>\mathbb{R}</math> and let <math>\Lambda:=\mathbb{Z}\omega_1+\mathbb{Z}\omega_2:=\{m\omega_1+n\omega_2: m,n\in\mathbb{Z}\}</math> be the [[period lattice]] generated by those numbers. Then the <math>\wp</math>-function is defined as follows: :<math>\weierp(z,\omega_1,\omega_2):=\wp(z) = \frac{1}{z^2} + \sum_{\lambda\in\Lambda\setminus\{0\}}\left(\frac 1 {(z-\lambda)^2} - \frac 1 {\lambda^2}\right).</math> This series converges locally [[Uniform absolute-convergence|uniformly absolutely]] in the [[complex torus]] <math>\mathbb{C} / \Lambda</math>. It is common to use <math>1</math> and <math>\tau</math> in the [[upper half-plane]] <math>\mathbb{H}:=\{z\in\mathbb{C}:\operatorname{Im}(z) > 0\}</math> as [[Linear_span|generators]] of the [[Lattice_(group)|lattice]]. Dividing by <math display="inline">\omega_1</math> maps the lattice <math>\mathbb{Z}\omega_1+\mathbb{Z}\omega_2</math> isomorphically onto the lattice <math>\mathbb{Z}+\mathbb{Z}\tau</math> with <math display="inline">\tau=\tfrac{\omega_2}{\omega_1}</math>. Because <math>-\tau</math> can be substituted for <math>\tau</math>, without loss of generality we can assume <math>\tau\in\mathbb{H}</math>, and then define <math>\wp(z,\tau) := \wp(z, 1,\tau)</math>. With that definition, we have <math>\wp(z,\omega_1,\omega_2) = \omega_1^{-2}\wp(z/\omega_1,\omega_2/\omega_1)</math>.
Edit summary
(Briefly describe your changes)
By publishing changes, you agree to the
Terms of Use
, and you irrevocably agree to release your contribution under the
CC BY-SA 4.0 License
and the
GFDL
. You agree that a hyperlink or URL is sufficient attribution under the Creative Commons license.
Cancel
Editing help
(opens in new window)