Open main menu
Home
Random
Recent changes
Special pages
Community portal
Preferences
About Wikipedia
Disclaimers
Incubator escapee wiki
Search
User menu
Talk
Dark mode
Contributions
Create account
Log in
Editing
Well-posed problem
(section)
Warning:
You are not logged in. Your IP address will be publicly visible if you make any edits. If you
log in
or
create an account
, your edits will be attributed to your username, along with other benefits.
Anti-spam check. Do
not
fill this in!
==Existence of local solutions== The existence of local solutions is often an important part of the well-posedness problem, and it is the foundation of many estimate methods, for example the energy method below. There are many results on this topic. For example, the [[Cauchy–Kowalevski theorem]] for Cauchy initial value problems essentially states that if the terms in a partial [[differential equation]] are all made up of [[analytic function]]s and a certain transversality condition is satisfied (the [[hyperplane]] or more generally hypersurface where the initial data are posed must be non-characteristic with respect to the partial differential operator), then on certain regions, there necessarily exist solutions which are as well analytic functions. This is a fundamental result in the study of analytic partial differential equations. Surprisingly, the theorem does not hold in the setting of smooth functions; an [[Lewy's example|example]] discovered by [[Hans Lewy]] in 1957 consists of a linear partial differential equation whose coefficients are smooth (i.e., have derivatives of all orders) but not analytic for which no solution exists. So the Cauchy-Kowalevski theorem is necessarily limited in its scope to analytic functions.
Edit summary
(Briefly describe your changes)
By publishing changes, you agree to the
Terms of Use
, and you irrevocably agree to release your contribution under the
CC BY-SA 4.0 License
and the
GFDL
. You agree that a hyperlink or URL is sufficient attribution under the Creative Commons license.
Cancel
Editing help
(opens in new window)