Open main menu
Home
Random
Recent changes
Special pages
Community portal
Preferences
About Wikipedia
Disclaimers
Incubator escapee wiki
Search
User menu
Talk
Dark mode
Contributions
Create account
Log in
Editing
Additive synthesis
(section)
Warning:
You are not logged in. Your IP address will be publicly visible if you make any edits. If you
log in
or
create an account
, your edits will be attributed to your username, along with other benefits.
Anti-spam check. Do
not
fill this in!
==Discrete-time equations== In digital implementations of additive synthesis, [[discrete signal|discrete-time]] equations are used in place of the continuous-time synthesis equations. A notational convention for discrete-time signals uses brackets i.e. <math>y[n]\,</math> and the argument <math>n\,</math> can only be integer values. If the continuous-time synthesis output <math>y(t)\,</math> is expected to be sufficiently [[bandlimited]]; below half the [[sampling rate]] or <math>f_\mathrm{s}/2\,</math>, it suffices to directly sample the continuous-time expression to get the discrete synthesis equation. The continuous synthesis output can later be [[Nyquist–Shannon sampling theorem|reconstructed]] from the samples using a [[digital-to-analog converter]]. The sampling period is <math>T=1/f_\mathrm{s}\,</math>. Beginning with ({{EquationNote|3}}), : <math>y(t) = \sum_{k=1}^{K} r_k(t) \cos\left(2 \pi \int_0^t f_k(u)\ du + \phi_k \right)</math> and sampling at discrete times <math> t = nT = n/f_\mathrm{s} \,</math> results in :<math> \begin{align} y[n] & = y(nT) = \sum_{k=1}^{K} r_k(nT) \cos\left(2 \pi \int_0^{nT} f_k(u)\ du + \phi_k \right) \\ & = \sum_{k=1}^{K} r_k(nT) \cos\left(2 \pi \sum_{i=1}^{n} \int_{(i-1)T}^{iT} f_k(u)\ du + \phi_k \right) \\ & = \sum_{k=1}^{K} r_k(nT) \cos\left(2 \pi \sum_{i=1}^{n} (T f_k[i]) + \phi_k \right) \\ & = \sum_{k=1}^{K} r_k[n] \cos\left(\frac{2 \pi}{f_\mathrm{s}} \sum_{i=1}^{n} f_k[i] + \phi_k \right) \\ \end{align} </math> where : <math>r_k[n] = r_k(nT) \,</math> is the discrete-time varying amplitude envelope : <math>f_k[n] = \frac{1}{T} \int_{(n-1)T}^{nT} f_k(t)\ dt \,</math> is the discrete-time [[Finite difference|backward difference]] instantaneous frequency. This is equivalent to : <math> y[n] = \sum_{k=1}^{K} r_k[n] \cos\left( \theta_k[n] \right) </math> where :<math> \begin{align} \theta_k[n] &= \frac{2 \pi}{f_\mathrm{s}} \sum_{i=1}^{n} f_k[i] + \phi_k \\ &= \theta_k[n-1] + \frac{2 \pi}{f_\mathrm{s}} f_k[n] \\ \end{align} </math> for all <math>n>0\,</math><ref name="RodetDepalle_FFTm1"/> and : <math> \theta_k[0] = \phi_k. \,</math>
Edit summary
(Briefly describe your changes)
By publishing changes, you agree to the
Terms of Use
, and you irrevocably agree to release your contribution under the
CC BY-SA 4.0 License
and the
GFDL
. You agree that a hyperlink or URL is sufficient attribution under the Creative Commons license.
Cancel
Editing help
(opens in new window)