Open main menu
Home
Random
Recent changes
Special pages
Community portal
Preferences
About Wikipedia
Disclaimers
Incubator escapee wiki
Search
User menu
Talk
Dark mode
Contributions
Create account
Log in
Editing
Bayes' theorem
(section)
Warning:
You are not logged in. Your IP address will be publicly visible if you make any edits. If you
log in
or
create an account
, your edits will be attributed to your username, along with other benefits.
Anti-spam check. Do
not
fill this in!
====Alternative form==== {| class="wikitable floatright" |+ [[Contingency table]] ! {{diagonal split header|<br />Proposition| Background}} !! B !! {{tmath|\lnot B}}<br />(not {{mvar|B}}) !! Total |- |- ! {{mvar|A}} | |<math>P(B|A)\cdot P(A)</math><br /><math>= P(A|B)\cdot P(B)</math> || |<math>P(\neg B|A)\cdot P(A)</math><br /><math>= P(A|\neg B)\cdot P(\neg B)</math> |style="text-align:center;"| {{tmath|P(A)}} |- ! {{tmath|\neg A}}<br/>(not {{mvar|A}}) | nowrap|<math>P(B|\neg A)\cdot P(\neg A)</math><br /><math>= P(\neg A|B)\cdot P(B)</math> || nowrap|<math>P(\neg B|\neg A)\cdot P(\neg A)</math><br /><math>= P(\neg A|\neg B)\cdot P(\neg B)</math> || nowrap|<math>P(\neg A)</math>=<br /><math>1-P(A)</math> |- | colspan="5" style="padding:0;"| |- ! Total | style="text-align:center;" | {{tmath|P(B)}} | style="text-align:center;" | <math>P(\neg B) = 1-P(B)</math> | style="text-align:center;" | 1 |} Another form of Bayes' theorem for two competing statements or hypotheses is: :<math>P(A| B) = \frac{P(B| A) P(A)}{ P(B| A) P(A) + P(B| \neg A) P(\neg A)}.</math> For an epistemological interpretation: For proposition ''A'' and evidence or background ''B'',<ref>{{cite web|title=Bayes' Theorem: Introduction|url=http://www.trinity.edu/cbrown/bayesweb/|website=Trinity University|url-status=dead|archive-url=https://web.archive.org/web/20040821012342/http://www.trinity.edu/cbrown/bayesweb/|archive-date=21 August 2004|access-date=5 August 2014}}</ref> * <math>P(A)</math> is the [[prior probability]], the initial degree of belief in ''A''. * <math>P(\neg A)</math> is the corresponding initial degree of belief in ''not-A'', that ''A'' is false, where <math> P(\neg A) =1-P(A) </math> * <math>P(B| A)</math> is the [[conditional probability]] or likelihood, the degree of belief in ''B'' given that ''A'' is true. * <math>P(B|\neg A)</math> is the [[conditional probability]] or likelihood, the degree of belief in ''B'' given that ''A'' is false. * <math>P(A| B)</math> is the [[posterior probability]], the probability of ''A'' after taking into account ''B''.
Edit summary
(Briefly describe your changes)
By publishing changes, you agree to the
Terms of Use
, and you irrevocably agree to release your contribution under the
CC BY-SA 4.0 License
and the
GFDL
. You agree that a hyperlink or URL is sufficient attribution under the Creative Commons license.
Cancel
Editing help
(opens in new window)