Open main menu
Home
Random
Recent changes
Special pages
Community portal
Preferences
About Wikipedia
Disclaimers
Incubator escapee wiki
Search
User menu
Talk
Dark mode
Contributions
Create account
Log in
Editing
Bessel function
(section)
Warning:
You are not logged in. Your IP address will be publicly visible if you make any edits. If you
log in
or
create an account
, your edits will be attributed to your username, along with other benefits.
Anti-spam check. Do
not
fill this in!
=== Sums with Bessel functions === The product of two Bessel functions admits the following sum: <math display="block">\sum_{\nu=-\infty}^\infty J_\nu(x) J_{n - \nu}(y) = J_{n}(x + y),</math> <math display="block">\sum_{\nu=-\infty}^\infty J_\nu(x) J_{\nu + n}(y) = J_{n}(y - x).</math> From these equalities it follows that <math display="block">\sum_{\nu=-\infty}^\infty J_\nu(x) J_{\nu + n}(x) = \delta_{n, 0}</math> and as a consequence <math display="block">\sum_{\nu=-\infty}^\infty J_{\nu}^2(x) = 1. </math> These sums can be extended to include a term multiplier that is a polynomial function of the index. For example, <math display="block">\sum_{\nu=-\infty}^\infty \nu J_\nu(x) J_{\nu + n}(x) = \frac{x}{2} \left( \delta_{n, 1} + \delta_{n, -1} \right),</math> <math display="block">\sum_{\nu=-\infty}^\infty \nu J_{\nu}^2(x) = 0, </math> <math display="block">\sum_{\nu=-\infty}^\infty \nu^2 J_\nu(x) J_{\nu + n}(x) = \frac{x}{2} \left( \delta_{n, -1} - \delta_{n, 1} \right) + \frac{x^2}{4} \left( \delta_{n, -2} + 2 \delta_{n, 0} + \delta_{n, 2} \right),</math> <math display="block">\sum_{\nu=-\infty}^\infty \nu^2 J_{\nu}^2(x) = \frac{x^2}{2}. </math>
Edit summary
(Briefly describe your changes)
By publishing changes, you agree to the
Terms of Use
, and you irrevocably agree to release your contribution under the
CC BY-SA 4.0 License
and the
GFDL
. You agree that a hyperlink or URL is sufficient attribution under the Creative Commons license.
Cancel
Editing help
(opens in new window)