Open main menu
Home
Random
Recent changes
Special pages
Community portal
Preferences
About Wikipedia
Disclaimers
Incubator escapee wiki
Search
User menu
Talk
Dark mode
Contributions
Create account
Log in
Editing
Binary relation
(section)
Warning:
You are not logged in. Your IP address will be publicly visible if you make any edits. If you
log in
or
create an account
, your edits will be attributed to your username, along with other benefits.
Anti-spam check. Do
not
fill this in!
== Preorder R\R == Every relation <math>R</math> generates a [[preorder]] <math>R \backslash R</math> which is the [[Composition of relations#Quotients|left residual]].<ref>In this context, the symbol <math>\backslash</math> does not mean "[[set difference]]".</ref> In terms of converse and complements, <math>R \backslash R \equiv \overline{R^\textsf{T} \bar{R}}.</math> Forming the diagonal of <math>R^\textsf{T} \bar{R}</math>, the corresponding row of <math>R^{\textsf{T}}</math> and column of <math>\bar{R}</math> will be of opposite logical values, so the diagonal is all zeros. Then : <math>R^\textsf{T} \bar{R} \subseteq \bar{I} \implies I \subseteq \overline{R^\textsf{T} \bar{R}} = R \backslash R</math>, so that <math>R \backslash R</math> is a [[reflexive relation]]. To show [[Transitive relation|transitivity]], one requires that <math>(R\backslash R)(R\backslash R) \subseteq R \backslash R.</math> Recall that <math>X = R \backslash R</math> is the largest relation such that <math>R X \subseteq R.</math> Then : <math>R(R\backslash R) \subseteq R</math> : <math>R(R\backslash R) (R\backslash R )\subseteq R</math> (repeat) : <math>\equiv R^\textsf{T} \bar{R} \subseteq \overline{(R \backslash R)(R \backslash R)}</math> (Schröder's rule) : <math>\equiv (R \backslash R)(R \backslash R) \subseteq \overline{R^\textsf{T} \bar{R}}</math> (complementation) : <math>\equiv (R \backslash R)(R \backslash R) \subseteq R \backslash R.</math> (definition) The [[inclusion (set theory)|inclusion]] relation Ω on the [[power set]] of <math>U</math> can be obtained in this way from the [[element (mathematics)|membership relation]] <math>\in</math> on subsets of <math>U</math>: : <math>\Omega = \overline{\ni \bar{\in}} = \in \backslash \in .</math><ref name=GS11/>{{rp|283}}
Edit summary
(Briefly describe your changes)
By publishing changes, you agree to the
Terms of Use
, and you irrevocably agree to release your contribution under the
CC BY-SA 4.0 License
and the
GFDL
. You agree that a hyperlink or URL is sufficient attribution under the Creative Commons license.
Cancel
Editing help
(opens in new window)