Open main menu
Home
Random
Recent changes
Special pages
Community portal
Preferences
About Wikipedia
Disclaimers
Incubator escapee wiki
Search
User menu
Talk
Dark mode
Contributions
Create account
Log in
Editing
Cardinality
(section)
Warning:
You are not logged in. Your IP address will be publicly visible if you make any edits. If you
log in
or
create an account
, your edits will be attributed to your username, along with other benefits.
Anti-spam check. Do
not
fill this in!
=== Aleph numbers === {{Main|Aleph number}} [[File:Aleph0.svg|right|thumb|169x169px|[[Aleph-nought]], aleph-zero, or aleph-null: the smallest infinite cardinal number, and the cardinal number of the set of natural numbers. ]] The [[aleph numbers]] are a sequence of cardinal numbers that denote the size of [[infinite sets]], denoted with an [[aleph]] <math>\aleph,</math> the first letter of the [[Hebrew alphabet]]. The first aleph number is <math>\aleph_0,</math> called "aleph-nought", "aleph-zero", or "aleph-null", which represents the cardinality of the set of all [[natural numbers]]: <math>\aleph_0 = |\N| = |\{0,1,2,3,\cdots\}| .</math> Then, <math>\aleph_1</math> represents the next largest cardinality. The most common way this is formalized in set theory is through [[Von Neumann ordinal]]s, known as [[Von Neumann cardinal assignment]]. [[Ordinal number]]s generalize the notion of ''order'' to infinite sets. For example, 2 comes after 1, denoted <math>1 < 2,</math> and 3 comes after both, denoted <math>1 < 2 < 3.</math> Then, one defines a new number, <math>\omega,</math> which comes after every natural number, denoted <math>1 < 2 < 3 < \cdots < \omega.</math> Further <math>\omega < \omega+1 ,</math> and so on. More formally, these ordinal numbers can be defined as follows: <math>0 := \{\},</math> the [[empty set]], <math>1 := \{0\} ,</math> <math>2 := \{0,1\},</math> <math>3 := \{0,1,2\},</math> and so on. Then one can define <math>m < n \text{, if } \, m \in n,</math> for examlpe, <math>2 \in \{0,1,2\} = 3,</math> therefore <math>2 < 3.</math> Defining <math>\omega := \{0,1,2,3,\cdots\}</math> (a [[limit ordinal]]) gives <math>\omega</math> the desired property of being the smallest ordinal greater than all finite ordinal numbers. Further, <math>\omega+1 := \{1,2,\cdots,\omega\}</math>, and so on. Since <math>\omega \sim \N</math> by the natural correspondence, one may define <math>\aleph_0</math> as the set of all finite ordinals. That is, <math>\aleph_0 := \omega.</math> Then, <math>\aleph_1</math> is the set of all countable ordinals (all ordinals <math>\kappa</math> with cardinality <math>|\kappa| \leq \aleph_0</math>), the [[first uncountable ordinal]]. Since a set cannot contain itself, <math>\aleph_1</math> must have a strictly larger cardinality: <math>\aleph_0 < \aleph_1.</math> Furthermore, <math>\aleph_2</math> is the set of all ordinals with cardinality <math>\aleph_1,</math> and so on. By the [[well-ordering theorem]], there cannot exist any set with cardinality between <math>\aleph_0</math> and <math>\aleph_1,</math> and every infinite set has some cardinality corresponding to some aleph <math>\aleph_\alpha,</math> for some ordinal <math>\alpha.</math>
Edit summary
(Briefly describe your changes)
By publishing changes, you agree to the
Terms of Use
, and you irrevocably agree to release your contribution under the
CC BY-SA 4.0 License
and the
GFDL
. You agree that a hyperlink or URL is sufficient attribution under the Creative Commons license.
Cancel
Editing help
(opens in new window)