Open main menu
Home
Random
Recent changes
Special pages
Community portal
Preferences
About Wikipedia
Disclaimers
Incubator escapee wiki
Search
User menu
Talk
Dark mode
Contributions
Create account
Log in
Editing
Covering space
(section)
Warning:
You are not logged in. Your IP address will be publicly visible if you make any edits. If you
log in
or
create an account
, your edits will be attributed to your username, along with other benefits.
Anti-spam check. Do
not
fill this in!
=== Examples === [[File:Hawaiian_Earrings.svg|right|thumb|250x250px|The Hawaiian earring. Only the ten largest circles are shown.]] * <math>r : \mathbb{R} \to S^1</math> with <math>r(t)=(\cos(2 \pi t), \sin(2 \pi t))</math> is the universal covering of the unit circle <math>S^1</math>. * <math>p : S^n \to \mathbb{R}P^n \cong \{+1,-1\}\backslash S^n</math> with <math>p(x)=[x]</math> is the universal covering of the [[projective space]] <math>\mathbb{R}P^n</math> for <math>n>1</math>. * <math>q : \mathrm{SU}(n) \ltimes \mathbb{R} \to U(n)</math> with <math display=block>q(A,t)= \begin{bmatrix} \exp(2 \pi i t) & 0\\ 0 & I_{n-1} \end{bmatrix}_\vphantom{x} A </math> is the universal covering of the [[unitary group]] <math>U(n)</math>.<ref>{{Cite journal |last1=Aguilar |first1=Marcelo Alberto |last2=Socolovsky |first2=Miguel |date=23 November 1999 |title=The Universal Covering Group of U(n) and Projective Representations |journal=[[International Journal of Theoretical Physics]] |publisher=Springer US |publication-date=April 2000 |volume=39 |issue=4 |pages=997β1013 |arxiv=math-ph/9911028 |doi=10.1023/A:1003694206391 |bibcode=1999math.ph..11028A|s2cid=18686364 }}</ref>{{rp|p=5|at=Theorem 1}} * Since <math>\mathrm{SU}(2) \cong S^3</math>, it follows that the [[quotient map (topology)|quotient map]] <math display=block>f : \mathrm{SU}(2) \rightarrow \mathrm{SU}(2) / \mathbb{Z_2} \cong \mathrm{SO}(3)</math> is the universal covering of <math>\mathrm{SO}(3)</math>. * A topological space which has no universal covering is the [[Hawaiian earring]]: <math display=block> X = \bigcup_{n\in \N}\left\{(x_1,x_2)\in\R^{2} : \Bigl(x_1-\frac{1}{n}\Bigr)^2+x_2^2=\frac{1}{n^2}\right\} </math> One can show that no neighborhood of the origin <math>(0,0)</math> is simply connected.{{r|Munkres|p=487|at=Example 1}}
Edit summary
(Briefly describe your changes)
By publishing changes, you agree to the
Terms of Use
, and you irrevocably agree to release your contribution under the
CC BY-SA 4.0 License
and the
GFDL
. You agree that a hyperlink or URL is sufficient attribution under the Creative Commons license.
Cancel
Editing help
(opens in new window)