Open main menu
Home
Random
Recent changes
Special pages
Community portal
Preferences
About Wikipedia
Disclaimers
Incubator escapee wiki
Search
User menu
Talk
Dark mode
Contributions
Create account
Log in
Editing
Curvilinear coordinates
(section)
Warning:
You are not logged in. Your IP address will be publicly visible if you make any edits. If you
log in
or
create an account
, your edits will be attributed to your username, along with other benefits.
Anti-spam check. Do
not
fill this in!
==Vector and tensor calculus in three-dimensional curvilinear coordinates== {{Einstein_summation_convention}} Adjustments need to be made in the calculation of [[line integral|line]], [[surface integral|surface]] and [[volume integral|volume]] [[integration (mathematics)|integrals]]. For simplicity, the following restricts to three dimensions and orthogonal curvilinear coordinates. However, the same arguments apply for ''n''-dimensional spaces. When the coordinate system is not orthogonal, there are some additional terms in the expressions. Simmonds,<ref name=Simmonds/> in his book on [[tensor analysis]], quotes [[Albert Einstein]] saying<ref name=Lanczos>{{cite book | last=Einstein | first=A. | year=1915 | contribution=Contribution to the Theory of General Relativity | editor=Laczos, C. | title=The Einstein Decade | page=213 | isbn=0-521-38105-3 }}</ref> <blockquote> The magic of this theory will hardly fail to impose itself on anybody who has truly understood it; it represents a genuine triumph of the method of absolute differential calculus, founded by Gauss, Riemann, Ricci, and Levi-Civita. </blockquote> Vector and tensor calculus in general curvilinear coordinates is used in tensor analysis on four-dimensional curvilinear [[manifold]]s in [[general relativity]],<ref name=Misner>{{cite book | last1=Misner | first1=C. W. | last2=Thorne | first2=K. S. | last3=Wheeler | first3=J. A. | year=1973 | title=Gravitation | publisher=W. H. Freeman and Co. | isbn=0-7167-0344-0}}</ref> in the [[solid mechanics|mechanics]] of curved [[Plate theory|shells]],<ref name=Ciarlet/> in examining the [[invariant (mathematics)|invariance]] properties of [[Maxwell's equations]] which has been of interest in [[metamaterials]]<ref name=Greenleaf>{{cite journal | doi=10.1088/0967-3334/24/2/353 | last1=Greenleaf | first1=A. | last2=Lassas | first2=M. | last3=Uhlmann | first3=G. | year=2003 | title=Anisotropic conductivities that cannot be detected by EIT | journal=Physiological Measurement | volume=24 | issue=2 | pages=413–419 | pmid=12812426}}</ref><ref name=Leonhardt>{{cite journal | last1=Leonhardt | first1=U. | last2=Philbin | first2=T.G. | year=2006 | title=General relativity in electrical engineering | journal=New Journal of Physics | volume=8 | page=247 | doi=10.1088/1367-2630/8/10/247 | issue=10 | arxiv=cond-mat/0607418 | bibcode=2006NJPh....8..247L }}</ref> and in many other fields. Some useful relations in the calculus of vectors and second-order tensors in curvilinear coordinates are given in this section. The notation and contents are primarily from Ogden,<ref>Ogden</ref> Simmonds,<ref name=Simmonds /> Green and Zerna,<ref name=Green/> Basar and Weichert,<ref name=Basar/> and Ciarlet.<ref name=Ciarlet/> Let φ = φ('''x''') be a well defined scalar field and '''v''' = '''v'''('''x''') a well-defined vector field, and ''λ''<sub>1</sub>, ''λ''<sub>2</sub>... be parameters of the coordinates ===Geometric elements=== {{ordered list |1= '''[[Tangent vector]]:''' If '''x'''(''λ'') parametrizes a curve ''C'' in Cartesian coordinates, then :<math> {\partial \mathbf{x} \over \partial \lambda} = {\partial \mathbf{x} \over \partial q^i}{\partial q^i \over \partial \lambda} = \left( h_{ki}\cfrac{\partial q^i}{\partial \lambda}\right)\mathbf{b}_k </math> is a tangent vector to ''C'' in curvilinear coordinates (using the [[chain rule]]). Using the definition of the Lamé coefficients, and that for the metric ''g<sub>ij</sub>'' = 0 when ''i'' ≠ ''j'', the magnitude is: :<math> \left|{\partial \mathbf{x} \over \partial \lambda} \right| = \sqrt{h_{ki}h_{kj}\cfrac{\partial q^i}{\partial \lambda}\cfrac{\partial q^j}{\partial \lambda}} = \sqrt{ g_{ij}\cfrac{\partial q^i}{\partial \lambda}\cfrac{\partial q^j}{\partial \lambda}} = \sqrt{h_{i}^2\left(\cfrac{\partial q^i}{\partial \lambda}\right)^2} </math> |2= '''[[Tangent plane]] element:''' If '''x'''(''λ''<sub>1</sub>, ''λ''<sub>2</sub>) parametrizes a surface ''S'' in Cartesian coordinates, then the following cross product of tangent vectors is a normal vector to ''S'' with the magnitude of infinitesimal plane element, in curvilinear coordinates. Using the above result, :<math> {\partial \mathbf{x} \over \partial \lambda_1}\times {\partial \mathbf{x} \over \partial \lambda_2} =\left({\partial \mathbf{x} \over \partial q^i}{\partial q^i \over \partial \lambda_1}\right) \times \left({\partial \mathbf{x} \over \partial q^j}{\partial q^j \over \partial \lambda_2}\right) = \mathcal{E}_{kmp}\left( h_{ki}{\partial q^i \over \partial \lambda_1}\right)\left(h_{mj}{\partial q^j \over \partial \lambda_2}\right) \mathbf{b}_p </math> where <math>\mathcal{E}</math> is the [[permutation symbol]]. In determinant form: :<math>{\partial \mathbf{x} \over \partial \lambda_1}\times {\partial \mathbf{x} \over \partial \lambda_2} =\begin{vmatrix} \mathbf{e}_1 & \mathbf{e}_2 & \mathbf{e}_3 \\ h_{1i} \dfrac{\partial q^i}{\partial \lambda_1} & h_{2i} \dfrac{\partial q^i}{\partial \lambda_1} & h_{3i} \dfrac{\partial q^i }{\partial \lambda_1} \\ h_{1j} \dfrac{\partial q^j}{\partial \lambda_2} & h_{2j} \dfrac{\partial q^j}{\partial \lambda_2} & h_{3j} \dfrac{\partial q^j }{\partial \lambda_2} \end{vmatrix}</math> }} ===Integration=== :{| class="wikitable" |- !scope=col width="10px"| Operator !scope=col width="200px"| Scalar field !scope=col width="200px"| Vector field |- |[[Line integral]] ||<math> \int_C \varphi(\mathbf{x}) ds = \int_a^b \varphi(\mathbf{x}(\lambda))\left|{\partial \mathbf{x} \over \partial \lambda}\right| d\lambda</math> ||<math> \int_C \mathbf{v}(\mathbf{x}) \cdot d\mathbf{s} = \int_a^b \mathbf{v}(\mathbf{x}(\lambda))\cdot\left({\partial \mathbf{x} \over \partial \lambda}\right) d\lambda</math> |- | [[Surface integral]] || <math>\int_S \varphi(\mathbf{x}) dS = \iint_T \varphi(\mathbf{x}(\lambda_1, \lambda_2)) \left|{\partial \mathbf{x} \over \partial \lambda_1}\times {\partial \mathbf{x} \over \partial \lambda_2}\right| d\lambda_1 d\lambda_2</math> ||<math>\int_S \mathbf{v}(\mathbf{x}) \cdot dS = \iint_T \mathbf{v}(\mathbf{x}(\lambda_1, \lambda_2)) \cdot\left({\partial \mathbf{x} \over \partial \lambda_1}\times {\partial \mathbf{x} \over \partial \lambda_2}\right) d\lambda_1 d\lambda_2</math> |- | [[Volume integral]] || <math>\iiint_V \varphi(x,y,z) dV = \iiint_V \chi(q_1,q_2,q_3) Jdq_1dq_2dq_3 </math> || <math>\iiint_V \mathbf{u}(x,y,z) dV = \iiint_V \mathbf{v}(q_1,q_2,q_3) Jdq_1dq_2dq_3 </math> |- |} ===Differentiation=== The expressions for the gradient, divergence, and Laplacian can be directly extended to ''n''-dimensions, however the curl is only defined in 3D. The vector field '''b'''<sub>''i''</sub> is tangent to the ''q<sup>i</sup>'' coordinate curve and forms a '''natural basis''' at each point on the curve. This basis, as discussed at the beginning of this article, is also called the '''covariant''' curvilinear basis. We can also define a '''reciprocal basis''', or '''contravariant''' curvilinear basis, '''b'''<sup>''i''</sup>. All the algebraic relations between the basis vectors, as discussed in the section on tensor algebra, apply for the natural basis and its reciprocal at each point '''x'''. :{| class="wikitable" |- !scope=col width="10px"| Operator !scope=col width="200px"| Scalar field !scope=col width="200px"| Vector field !scope=col width="200px"| 2nd order tensor field |- | [[Gradient]] || <math> \nabla\varphi = \cfrac{1}{h_i}{\partial\varphi \over \partial q^i} \mathbf{b}^i </math> || <math>\nabla\mathbf{v} = \cfrac{1}{h_i^2}{\partial \mathbf{v} \over \partial q^i}\otimes\mathbf{b}_i </math> || <math>\boldsymbol{\nabla}\boldsymbol{S} = \cfrac{\partial \boldsymbol{S}}{\partial q^i}\otimes\mathbf{b}^i</math> |- | [[Divergence]] || N/A || <math> \nabla \cdot \mathbf{v} = \cfrac{1}{\prod_j h_j} \frac{\partial }{\partial q^i}(v^i\prod_{j\ne i} h_j) </math> || <math> (\boldsymbol{\nabla}\cdot\boldsymbol{S})\cdot\mathbf{a} = \boldsymbol{\nabla}\cdot(\boldsymbol{S}\cdot\mathbf{a}) </math> where '''a''' is an arbitrary constant vector. In curvilinear coordinates, <math>\boldsymbol{\nabla}\cdot\boldsymbol{S} = \left[\cfrac{\partial S_{ij}}{\partial q^k} - \Gamma^l_{ki}S_{lj} - \Gamma^l_{kj}S_{il}\right]g^{ik}\mathbf{b}^j </math> |- | [[Laplacian]] ||<math> \nabla^2 \varphi = \cfrac{1}{\prod _j h_j}\frac{\partial }{\partial q^i}\left(\cfrac{\prod _j h_j}{h_i^2}\frac{\partial \varphi}{\partial q^i}\right) </math> || <math> \nabla^2 \mathbf{v} \equiv \nabla \nabla\cdot \mathbf{v} - \nabla \times \nabla \times \mathbf{v} </math> <math>~~~ = \hat{\mathbf{x}}\nabla^2 v_x + \hat{\mathbf{y}}\nabla^2 v_y + \hat{\mathbf{z}}\nabla^2 v_z</math> (First equality in 3D only; second equality in Cartesian components only) || |- | [[Curl (mathematics)|Curl]] || N/A || For vector fields in 3D only, <math> \nabla\times\mathbf{v} = \frac{1}{h_1h_2h_3} \mathbf{e}_i \epsilon_{ijk} h_i \frac{\partial (h_k v_k)}{\partial q^j} </math> where <math>\epsilon_{ijk}</math> is the [[Levi-Civita symbol]]. || See [[Tensor derivative (continuum mechanics)#Curl of a tensor field|''Curl of a tensor field'']] |}
Edit summary
(Briefly describe your changes)
By publishing changes, you agree to the
Terms of Use
, and you irrevocably agree to release your contribution under the
CC BY-SA 4.0 License
and the
GFDL
. You agree that a hyperlink or URL is sufficient attribution under the Creative Commons license.
Cancel
Editing help
(opens in new window)