Open main menu
Home
Random
Recent changes
Special pages
Community portal
Preferences
About Wikipedia
Disclaimers
Incubator escapee wiki
Search
User menu
Talk
Dark mode
Contributions
Create account
Log in
Editing
Determinant
(section)
Warning:
You are not logged in. Your IP address will be publicly visible if you make any edits. If you
log in
or
create an account
, your edits will be attributed to your username, along with other benefits.
Anti-spam check. Do
not
fill this in!
== Properties of the determinant in relation to other notions == === Eigenvalues and characteristic polynomial === The determinant is closely related to two other central concepts in linear algebra, the [[eigenvalue]]s and the [[characteristic polynomial]] of a matrix. Let <math>A</math> be an <math>n \times n</math> matrix with [[complex number|complex]] entries. Then, by the Fundamental Theorem of Algebra, <math>A</math> must have exactly ''n'' [[eigenvectors|eigenvalues]] <math>\lambda_1, \lambda_2, \ldots, \lambda_n</math>. (Here it is understood that an eigenvalue with [[algebraic multiplicity]] {{mvar|μ}} occurs {{mvar|μ}} times in this list.) Then, it turns out the determinant of {{mvar|A}} is equal to the ''product'' of these eigenvalues, :<math>\det(A) = \prod_{i=1}^n \lambda_i=\lambda_1\lambda_2\cdots\lambda_n.</math> The product of all non-zero eigenvalues is referred to as [[pseudo-determinant]]. From this, one immediately sees that the determinant of a matrix <math>A</math> is zero if and only if <math>0</math> is an eigenvalue of <math>A</math>. In other words, <math>A</math> is invertible if and only if <math>0</math> is not an eigenvalue of <math>A</math>. The characteristic polynomial is defined as<ref>{{harvnb|Lang|1985|loc=§VIII.2}}, {{harvnb|Horn|Johnson|2018|loc=Def. 1.2.3}}</ref> :<math>\chi_A(t) = \det(t \cdot I - A).</math> Here, <math>t</math> is the [[indeterminate (variable)|indeterminate]] of the polynomial and <math>I</math> is the identity matrix of the same size as <math>A</math>. By means of this polynomial, determinants can be used to find the [[eigenvalue]]s of the matrix <math>A</math>: they are precisely the [[Root of a polynomial|roots]] of this polynomial, i.e., those complex numbers <math>\lambda</math> such that :<math>\chi_A(\lambda) = 0.</math> A [[Hermitian matrix]] is [[positive definite matrix|positive definite]] if all its eigenvalues are positive. [[Sylvester's criterion]] asserts that this is equivalent to the determinants of the submatrices :<math>A_k := \begin{bmatrix} a_{1,1} & a_{1,2} & \cdots & a_{1,k} \\ a_{2,1} & a_{2,2} & \cdots & a_{2,k} \\ \vdots & \vdots & \ddots & \vdots \\ a_{k,1} & a_{k,2} & \cdots & a_{k,k} \end{bmatrix}</math> being positive, for all <math>k</math> between <math>1</math> and <math>n</math>.<ref>{{harvnb|Horn|Johnson|2018|loc=Observation 7.1.2, Theorem 7.2.5}}</ref> === Trace === The [[Trace (linear algebra)|trace]] tr(''A'') is by definition the sum of the diagonal entries of {{mvar|A}} and also equals the sum of the eigenvalues. Thus, for complex matrices {{mvar|A}}, :<math>\det(\exp(A)) = \exp(\operatorname{tr}(A))</math> or, for real matrices {{mvar|A}}, :<math>\operatorname{tr}(A) = \log(\det(\exp(A))).</math> Here exp({{mvar|A}}) denotes the [[matrix exponential]] of {{mvar|A}}, because every eigenvalue {{mvar|λ}} of {{mvar|A}} corresponds to the eigenvalue exp({{mvar|λ}}) of exp({{mvar|A}}). In particular, given any [[matrix logarithm|logarithm]] of {{mvar|A}}, that is, any matrix {{mvar|L}} satisfying :<math>\exp(L) = A</math> the determinant of {{mvar|A}} is given by :<math>\det(A) = \exp(\operatorname{tr}(L)).</math> For example, for {{math|1=''n'' = 2}}, {{math|1=''n'' = 3}}, and {{math|1=''n'' = 4}}, respectively, :<math>\begin{align} \det(A) &= \frac{1}{2}\left(\left(\operatorname{tr}(A)\right)^2 - \operatorname{tr}\left(A^2\right)\right), \\ \det(A) &= \frac{1}{6}\left(\left(\operatorname{tr}(A)\right)^3 - 3\operatorname{tr}(A) ~ \operatorname{tr}\left(A^2\right) + 2 \operatorname{tr}\left(A^3\right)\right), \\ \det(A) &= \frac{1}{24}\left(\left(\operatorname{tr}(A)\right)^4 - 6\operatorname{tr}\left(A^2\right)\left(\operatorname{tr}(A)\right)^2 + 3\left(\operatorname{tr}\left(A^2\right)\right)^2 + 8\operatorname{tr}\left(A^3\right)~\operatorname{tr}(A) - 6\operatorname{tr}\left(A^4\right)\right). \end{align}</math> cf. [[Cayley–Hamilton theorem#Illustration for specific dimensions and practical applications|Cayley-Hamilton theorem]]. Such expressions are deducible from combinatorial arguments, [[Newton's identities#Computing coefficients|Newton's identities]], or the [[Faddeev–LeVerrier algorithm]]. That is, for generic {{mvar|n}}, {{math|det''A'' {{=}} (−1)<sup>''n''</sup>''c''<sub>0</sub>}} the signed constant term of the [[characteristic polynomial]], determined recursively from :<math>c_n = 1; ~~~c_{n-m} = -\frac{1}{m}\sum_{k=1}^m c_{n-m+k} \operatorname{tr}\left(A^k\right) ~~(1 \le m \le n)~.</math> In the general case, this may also be obtained from<ref>A proof can be found in the Appendix B of {{cite journal | last1 = Kondratyuk | first1 = L. A. | last2 = Krivoruchenko | first2 = M. I. | year = 1992 | title = Superconducting quark matter in SU(2) color group | journal = Zeitschrift für Physik A | volume = 344 | issue = 1| pages = 99–115 | doi = 10.1007/BF01291027 | bibcode = 1992ZPhyA.344...99K | s2cid = 120467300 }}</ref> :<math>\det(A) = \sum_{\begin{array}{c}k_1,k_2,\ldots,k_n \geq 0\\k_1+2k_2+\cdots+nk_n=n\end{array}}\prod_{l=1}^n \frac{(-1)^{k_l+1}}{l^{k_l}k_l!} \operatorname{tr}\left(A^l\right)^{k_l},</math> where the sum is taken over the set of all integers {{math|''k<sub>l</sub>'' ≥ 0}} satisfying the equation :<math>\sum_{l=1}^n lk_l = n.</math> The formula can be expressed in terms of the complete exponential [[Bell polynomial]] of ''n'' arguments ''s''<sub>''l''</sub> = −(''l'' – 1)! tr(''A''<sup>''l''</sup>) as :<math>\det(A) = \frac{(-1)^n}{n!} B_n(s_1, s_2, \ldots, s_n).</math> This formula can also be used to find the determinant of a matrix {{math|''A<sup>I</sup><sub>J</sub>''}} with multidimensional indices {{math|1=''I'' = (''i''<sub>1</sub>, ''i''<sub>2</sub>, ..., ''i<sub>r</sub>'')}} and {{math|1=''J'' = (''j''<sub>1</sub>, ''j''<sub>2</sub>, ..., ''j<sub>r</sub>'')}}. The product and trace of such matrices are defined in a natural way as :<math>(AB)^I_J = \sum_K A^I_K B^K_J, \operatorname{tr}(A) = \sum_I A^I_I.</math> An important arbitrary dimension {{mvar|n}} identity can be obtained from the [[Mercator series]] expansion of the logarithm when the expansion converges. If every eigenvalue of ''A'' is less than 1 in absolute value, :<math>\det(I + A) = \sum_{k=0}^\infty \frac{1}{k!} \left(-\sum_{j=1}^\infty \frac{(-1)^j}{j} \operatorname{tr}\left(A^j\right)\right)^k\,,</math> where {{math|''I''}} is the identity matrix. More generally, if :<math>\sum_{k=0}^\infty \frac{1}{k!} \left(-\sum_{j=1}^\infty \frac{(-1)^j s^j}{j}\operatorname{tr}\left(A^j\right)\right)^k\,,</math> is expanded as a formal [[power series]] in {{mvar|s}} then all coefficients of {{mvar|s}}<sup>{{mvar|m}}</sup> for {{math|''m'' > ''n''}} are zero and the remaining polynomial is {{math|det(''I'' + ''sA'')}}. === Upper and lower bounds === For a positive definite matrix {{math|''A''}}, the trace operator gives the following tight lower and upper bounds on the log determinant :<math>\operatorname{tr}\left(I - A^{-1}\right) \le \log\det(A) \le \operatorname{tr}(A - I)</math> with equality if and only if {{math|1=''A'' = ''I''}}. This relationship can be derived via the formula for the [[Kullback-Leibler divergence]] between two [[multivariate normal]] distributions. Also, :<math>\frac{n}{\operatorname{tr}\left(A^{-1}\right)} \leq \det(A)^\frac{1}{n} \leq \frac{1}{n}\operatorname{tr}(A) \leq \sqrt{\frac{1}{n}\operatorname{tr}\left(A^2\right)}.</math> These inequalities can be proved by expressing the traces and the determinant in terms of the eigenvalues. As such, they represent the well-known fact that the [[harmonic mean]] is less than the [[geometric mean]], which is less than the [[arithmetic mean]], which is, in turn, less than the [[root mean square]]. === Derivative === The Leibniz formula shows that the determinant of real (or analogously for complex) square matrices is a [[polynomial]] function from <math>\mathbf R^{n \times n}</math> to <math>\mathbf R</math>. In particular, it is everywhere [[differentiable]]. Its derivative can be expressed using [[Jacobi's formula]]:<ref>{{harvnb|Horn|Johnson|2018|loc=§ 0.8.10}}</ref> :<math>\frac{d \det(A)}{d \alpha} = \operatorname{tr}\left(\operatorname{adj}(A) \frac{d A}{d \alpha}\right).</math> where <math>\operatorname{adj}(A)</math> denotes the [[adjugate]] of <math>A</math>. In particular, if <math>A</math> is invertible, we have :<math>\frac{d \det(A)}{d \alpha} = \det(A) \operatorname{tr}\left(A^{-1} \frac{d A}{d \alpha}\right).</math> Expressed in terms of the entries of <math>A</math>, these are : <math> \frac{\partial \det(A)}{\partial A_{ij}}= \operatorname{adj}(A)_{ji} = \det(A)\left(A^{-1}\right)_{ji}.</math> Yet another equivalent formulation is :<math>\det(A + \epsilon X) - \det(A) = \operatorname{tr}(\operatorname{adj}(A) X) \epsilon + O\left(\epsilon^2\right) = \det(A) \operatorname{tr}\left(A^{-1} X\right) \epsilon + O\left(\epsilon^2\right)</math>, using [[big O notation]]. The special case where <math>A = I</math>, the identity matrix, yields :<math>\det(I + \epsilon X) = 1 + \operatorname{tr}(X) \epsilon + O\left(\epsilon^2\right).</math> This identity is used in describing [[Lie algebra]]s associated to certain matrix [[Lie group]]s. For example, the special linear group <math>\operatorname{SL}_n</math> is defined by the equation <math>\det A = 1</math>. The above formula shows that its Lie algebra is the [[special linear Lie algebra]] <math>\mathfrak{sl}_n</math> consisting of those matrices having trace zero. Writing a <math>3 \times 3</math> matrix as <math>A = \begin{bmatrix}a & b & c\end{bmatrix}</math> where <math>a, b,c</math> are column vectors of length 3, then the gradient over one of the three vectors may be written as the [[cross product]] of the other two: : <math>\begin{align} \nabla_\mathbf{a}\det(A) &= \mathbf{b} \times \mathbf{c} \\ \nabla_\mathbf{b}\det(A) &= \mathbf{c} \times \mathbf{a} \\ \nabla_\mathbf{c}\det(A) &= \mathbf{a} \times \mathbf{b}. \end{align}</math>
Edit summary
(Briefly describe your changes)
By publishing changes, you agree to the
Terms of Use
, and you irrevocably agree to release your contribution under the
CC BY-SA 4.0 License
and the
GFDL
. You agree that a hyperlink or URL is sufficient attribution under the Creative Commons license.
Cancel
Editing help
(opens in new window)