Open main menu
Home
Random
Recent changes
Special pages
Community portal
Preferences
About Wikipedia
Disclaimers
Incubator escapee wiki
Search
User menu
Talk
Dark mode
Contributions
Create account
Log in
Editing
Gamma function
(section)
Warning:
You are not logged in. Your IP address will be publicly visible if you make any edits. If you
log in
or
create an account
, your edits will be attributed to your username, along with other benefits.
Anti-spam check. Do
not
fill this in!
=== Particular values === {{Main|Particular values of the gamma function}} Including up to the first 20 digits after the decimal point, some particular values of the gamma function are: <math display="block">\begin{array}{rcccl} \Gamma\left(-\tfrac{3}{2}\right) &=& \tfrac{4\sqrt{\pi}}{3} &\approx& +2.36327\,18012\,07354\,70306 \\ \Gamma\left(-\tfrac{1}{2}\right) &=& -2\sqrt{\pi} &\approx& -3.54490\,77018\,11032\,05459 \\ \Gamma\left(\tfrac{1}{2}\right) &=& \sqrt{\pi} &\approx& +1.77245\,38509\,05516\,02729 \\ \Gamma(1) &=& 0! &=& +1 \\ \Gamma\left(\tfrac{3}{2}\right) &=& \tfrac{\sqrt{\pi}}{2} &\approx& +0.88622\,69254\,52758\,01364 \\ \Gamma(2) &=& 1! &=& +1 \\ \Gamma\left(\tfrac{5}{2}\right) &=& \tfrac{3\sqrt{\pi}}{4} &\approx& +1.32934\,03881\,79137\,02047 \\ \Gamma(3) &=& 2! &=& +2 \\ \Gamma\left(\tfrac{7}{2}\right) &=& \tfrac{15\sqrt{\pi}}{8} &\approx& +3.32335\,09704\,47842\,55118 \\ \Gamma(4) &=& 3! &=& +6 \end{array}</math> (These numbers can be found in the [[On-Line Encyclopedia of Integer Sequences|OEIS]].<ref>{{Cite OEIS|A245886|Decimal expansion of Gamma(-3/2), where Gamma is Euler's gamma function}}</ref><ref>{{Cite OEIS|A019707|Decimal expansion of sqrt(Pi)/5}}</ref><ref>{{Cite OEIS|A002161|Decimal expansion of square root of Pi}}</ref><ref>{{Cite OEIS|A019704|Decimal expansion of sqrt(Pi)/2}}</ref><ref>{{Cite OEIS|A245884|Decimal expansion of Gamma(5/2), where Gamma is Euler's gamma function}}</ref><ref>{{Cite OEIS|A245885|Decimal expansion of Gamma(7/2), where Gamma is Euler's gamma function}}</ref> The values presented here are truncated rather than rounded.) The complex-valued gamma function is undefined for non-positive integers, but in these cases the value can be defined in the [[Riemann sphere]] as {{math|β}}. The [[reciprocal gamma function]] is [[well defined]] and [[analytic function|analytic]] at these values (and in the [[entire function|entire complex plane]]): <math display="block">\frac{1}{\Gamma(-3)} = \frac{1}{\Gamma(-2)} = \frac{1}{\Gamma(-1)} = \frac{1}{\Gamma(0)} = 0.</math>
Edit summary
(Briefly describe your changes)
By publishing changes, you agree to the
Terms of Use
, and you irrevocably agree to release your contribution under the
CC BY-SA 4.0 License
and the
GFDL
. You agree that a hyperlink or URL is sufficient attribution under the Creative Commons license.
Cancel
Editing help
(opens in new window)