Open main menu
Home
Random
Recent changes
Special pages
Community portal
Preferences
About Wikipedia
Disclaimers
Incubator escapee wiki
Search
User menu
Talk
Dark mode
Contributions
Create account
Log in
Editing
General relativity
(section)
Warning:
You are not logged in. Your IP address will be publicly visible if you make any edits. If you
log in
or
create an account
, your edits will be attributed to your username, along with other benefits.
Anti-spam check. Do
not
fill this in!
=== Gravitational lensing === {{Main|Gravitational lensing}} [[File:Einstein cross (cropped).jpg|thumb|upright=0.88|[[Einstein cross]]: four images of the same astronomical object, produced by a gravitational lens]] The deflection of light by gravity is responsible for a new class of astronomical phenomena. If a massive object is situated between the astronomer and a distant target object with appropriate mass and relative distances, the astronomer will see multiple distorted images of the target. Such effects are known as gravitational lensing.<ref>For overviews of gravitational lensing and its applications, see {{Harvnb|Ehlers|Falco|Schneider|1992}} and {{Harvnb|Wambsganss|1998}}</ref> Depending on the configuration, scale, and mass distribution, there can be two or more images, a bright ring known as an [[Einstein ring]], or partial rings called arcs.<ref>For a simple derivation, see {{Harvnb|Schutz|2003|loc=ch. 23}}; cf. {{Harvnb|Narayan|Bartelmann|1997|loc=sec. 3}}</ref> The [[Twin Quasar|earliest example]] was discovered in 1979;<ref>{{Harvnb|Walsh|Carswell|Weymann|1979}}</ref> since then, more than a hundred gravitational lenses have been observed.<ref>Images of all the known lenses can be found on the pages of the CASTLES project, {{Harvnb|Kochanek|Falco|Impey|Lehar|2007}}</ref> Even if the multiple images are too close to each other to be resolved, the effect can still be measured, e.g., as an overall brightening of the target object; a number of such "[[microlensing]] events" have been observed.<ref>{{Harvnb|Roulet|Mollerach|1997}}</ref> Gravitational lensing has developed into a tool of [[observational astronomy]]. It is used to detect the presence and distribution of [[dark matter]], provide a "natural telescope" for observing distant galaxies, and to obtain an independent estimate of the [[Hubble constant]]. Statistical evaluations of lensing data provide valuable insight into the structural evolution of [[galaxy|galaxies]].<ref>{{Harvnb|Narayan|Bartelmann|1997|loc=sec. 3.7}}</ref>
Edit summary
(Briefly describe your changes)
By publishing changes, you agree to the
Terms of Use
, and you irrevocably agree to release your contribution under the
CC BY-SA 4.0 License
and the
GFDL
. You agree that a hyperlink or URL is sufficient attribution under the Creative Commons license.
Cancel
Editing help
(opens in new window)