Open main menu
Home
Random
Recent changes
Special pages
Community portal
Preferences
About Wikipedia
Disclaimers
Incubator escapee wiki
Search
User menu
Talk
Dark mode
Contributions
Create account
Log in
Editing
Hyperbolic functions
(section)
Warning:
You are not logged in. Your IP address will be publicly visible if you make any edits. If you
log in
or
create an account
, your edits will be attributed to your username, along with other benefits.
Anti-spam check. Do
not
fill this in!
==Taylor series expressions== It is possible to express explicitly the [[Taylor series]] at zero (or the [[Laurent series]], if the function is not defined at zero) of the above functions. <math display="block">\sinh x = x + \frac {x^3} {3!} + \frac {x^5} {5!} + \frac {x^7} {7!} + \cdots = \sum_{n=0}^\infty \frac{x^{2n+1}}{(2n+1)!}</math> This series is [[convergent series|convergent]] for every [[complex number|complex]] value of {{mvar|x}}. Since the function {{math|sinh ''x''}} is [[odd function|odd]], only odd exponents for {{math|''x''}} occur in its Taylor series. <math display="block">\cosh x = 1 + \frac {x^2} {2!} + \frac {x^4} {4!} + \frac {x^6} {6!} + \cdots = \sum_{n=0}^\infty \frac{x^{2n}}{(2n)!}</math> This series is [[convergent series|convergent]] for every [[complex number|complex]] value of {{mvar|x}}. Since the function {{math|cosh ''x''}} is [[even function|even]], only even exponents for {{mvar|x}} occur in its Taylor series. The sum of the sinh and cosh series is the [[infinite series]] expression of the [[exponential function]]. The following series are followed by a description of a subset of their [[domain of convergence]], where the series is convergent and its sum equals the function. <math display="block">\begin{align} \tanh x &= x - \frac {x^3} {3} + \frac {2x^5} {15} - \frac {17x^7} {315} + \cdots = \sum_{n=1}^\infty \frac{2^{2n}(2^{2n}-1)B_{2n} x^{2n-1}}{(2n)!}, \qquad \left |x \right | < \frac {\pi} {2} \\ \coth x &= x^{-1} + \frac {x} {3} - \frac {x^3} {45} + \frac {2x^5} {945} + \cdots = \sum_{n=0}^\infty \frac{2^{2n} B_{2n} x^{2n-1}} {(2n)!}, \qquad 0 < \left |x \right | < \pi \\ \operatorname{sech} x &= 1 - \frac {x^2} {2} + \frac {5x^4} {24} - \frac {61x^6} {720} + \cdots = \sum_{n=0}^\infty \frac{E_{2 n} x^{2n}}{(2n)!} , \qquad \left |x \right | < \frac {\pi} {2} \\ \operatorname{csch} x &= x^{-1} - \frac {x} {6} +\frac {7x^3} {360} -\frac {31x^5} {15120} + \cdots = \sum_{n=0}^\infty \frac{ 2 (1-2^{2n-1}) B_{2n} x^{2n-1}}{(2n)!} , \qquad 0 < \left |x \right | < \pi \end{align}</math> where: *<math>B_n </math> is the ''n''th [[Bernoulli number]] *<math>E_n </math> is the ''n''th [[Euler number]]
Edit summary
(Briefly describe your changes)
By publishing changes, you agree to the
Terms of Use
, and you irrevocably agree to release your contribution under the
CC BY-SA 4.0 License
and the
GFDL
. You agree that a hyperlink or URL is sufficient attribution under the Creative Commons license.
Cancel
Editing help
(opens in new window)