Open main menu
Home
Random
Recent changes
Special pages
Community portal
Preferences
About Wikipedia
Disclaimers
Incubator escapee wiki
Search
User menu
Talk
Dark mode
Contributions
Create account
Log in
Editing
Incircle and excircles
(section)
Warning:
You are not logged in. Your IP address will be publicly visible if you make any edits. If you
log in
or
create an account
, your edits will be attributed to your username, along with other benefits.
Anti-spam check. Do
not
fill this in!
===Other excircle properties=== The circular [[convex hull|hull]] of the excircles is internally tangent to each of the excircles and is thus an [[Problem of Apollonius|Apollonius circle]].<ref>[http://forumgeom.fau.edu/FG2002volume2/FG200222.pdf Grinberg, Darij, and Yiu, Paul, "The Apollonius Circle as a Tucker Circle", ''Forum Geometricorum'' 2, 2002: pp. 175-182.]</ref> The radius of this Apollonius circle is <math>\tfrac{r^2 + s^2}{4r}</math> where <math>r</math> is the incircle radius and <math>s</math> is the semiperimeter of the triangle.<ref>[http://forumgeom.fau.edu/FG2003volume3/FG200320.pdf Stevanovi´c, Milorad R., "The Apollonius circle and related triangle centers", ''Forum Geometricorum'' 3, 2003, 187-195.]</ref> The following relations hold among the inradius <math>r</math>, the circumradius <math>R</math>, the semiperimeter <math>s</math>, and the excircle radii <math>r_a</math>, <math>r_b</math>, <math>r_c</math>:<ref name=Bell>{{cite web |author=Bell, Amy |title="Hansen's right triangle theorem, its converse and a generalization", ''Forum Geometricorum'' 6, 2006, 335–342. |url=http://forumgeom.fau.edu/FG2006volume6/FG200639.pdf |access-date=2012-05-05 |url-status=dead |archive-url=https://web.archive.org/web/20210831080348/https://forumgeom.fau.edu/FG2006volume6/FG200639.pdf |archive-date=2021-08-31}}</ref> :<math display=block>\begin{align} r_a + r_b + r_c &= 4R + r, \\ r_a r_b + r_b r_c + r_c r_a &= s^2, \\ r_a^2 + r_b^2 + r_c^2 &= \left(4R + r\right)^2 - 2s^2. \end{align}</math> The circle through the centers of the three excircles has radius <math>2R</math>.<ref name=Bell/> If <math>H</math> is the [[orthocenter]] of <math>\triangle ABC</math>, then<ref name=Bell/> :<math display=block>\begin{align} r_a + r_b + r_c + r &= \overline{AH} + \overline{BH} + \overline{CH} + 2R, \\ r_a^2 + r_b^2 + r_c^2 + r^2 &= \overline{AH}^2 + \overline{BH}^2 + \overline{CH}^2 + (2R)^2. \end{align}</math>
Edit summary
(Briefly describe your changes)
By publishing changes, you agree to the
Terms of Use
, and you irrevocably agree to release your contribution under the
CC BY-SA 4.0 License
and the
GFDL
. You agree that a hyperlink or URL is sufficient attribution under the Creative Commons license.
Cancel
Editing help
(opens in new window)