Open main menu
Home
Random
Recent changes
Special pages
Community portal
Preferences
About Wikipedia
Disclaimers
Incubator escapee wiki
Search
User menu
Talk
Dark mode
Contributions
Create account
Log in
Editing
Inclusion–exclusion principle
(section)
Warning:
You are not logged in. Your IP address will be publicly visible if you make any edits. If you
log in
or
create an account
, your edits will be attributed to your username, along with other benefits.
Anti-spam check. Do
not
fill this in!
==Diluted inclusion–exclusion principle== {{See also|Bonferroni inequalities}} In many cases where the principle could give an exact formula (in particular, counting [[prime number]]s using the [[sieve of Eratosthenes]]), the formula arising does not offer useful content because the number of terms in it is excessive. If each term individually can be estimated accurately, the accumulation of errors may imply that the inclusion–exclusion formula is not directly applicable. In [[number theory]], this difficulty was addressed by [[Viggo Brun]]. After a slow start, his ideas were taken up by others, and a large variety of [[sieve theory|sieve methods]] developed. These for example may try to find upper bounds for the "sieved" sets, rather than an exact formula. Let ''A''<sub>1</sub>, ..., ''A''<sub>''n''</sub> be arbitrary sets and ''p''<sub>1</sub>, ..., ''p''<sub>''n''</sub> real numbers in the closed unit interval {{closed-closed|0, 1}}. Then, for every even number ''k'' in {0, ..., ''n''}, the [[indicator function]]s satisfy the inequality:<ref>{{harv|Fernández|Fröhlich|Alan D.|1992|loc=Proposition 12.6}}</ref> : <math>1_{A_1\cup\cdots\cup A_n} \ge \sum_{j=1}^k (-1)^{j-1}\sum_{1\le i_1<\cdots<i_j\le n} p_{i_1} \dots p_{i_j} \, 1_{A_{i_1} \cap \cdots \cap A_{i_j}}.</math>
Edit summary
(Briefly describe your changes)
By publishing changes, you agree to the
Terms of Use
, and you irrevocably agree to release your contribution under the
CC BY-SA 4.0 License
and the
GFDL
. You agree that a hyperlink or URL is sufficient attribution under the Creative Commons license.
Cancel
Editing help
(opens in new window)