Open main menu
Home
Random
Recent changes
Special pages
Community portal
Preferences
About Wikipedia
Disclaimers
Incubator escapee wiki
Search
User menu
Talk
Dark mode
Contributions
Create account
Log in
Editing
Limit of a sequence
(section)
Warning:
You are not logged in. Your IP address will be publicly visible if you make any edits. If you
log in
or
create an account
, your edits will be attributed to your username, along with other benefits.
Anti-spam check. Do
not
fill this in!
===Pointwise limits and uniform limits=== For a double sequence <math>(x_{n,m})</math>, we may take limit in one of the indices, say, <math>n \to \infty</math>, to obtain a single sequence <math>(y_m)</math>. In fact, there are two possible meanings when taking this limit. The first one is called '''pointwise limit''', denoted :<math>x_{n, m} \to y_m\quad \text{pointwise}</math>, or :<math>\lim_{n \to \infty} x_{n, m} = y_m\quad \text{pointwise}</math>, which means: :For each [[real number]] <math>\varepsilon > 0</math> and each fixed [[natural number]] <math>m</math>, there exists a natural number <math>N(\varepsilon, m) > 0</math> such that, for every natural number <math>n \geq N</math>, we have <math>|x_{n, m} - y_m| < \varepsilon</math>.<ref name="Habil">{{Cite web|url=https://www.researchgate.net/publication/242705642|date=2005|title=Double Sequences and Double Series|last=Habil|first=Eissa|language=en|access-date=2022-10-28}}</ref> Symbolically, this is: :<math>\forall \varepsilon > 0 \left( \forall m \in \mathbb{N} \left(\exists N \in \N \left(\forall n \in \N \left(n \geq N \implies |x_{n, m} - y_m| < \varepsilon \right)\right)\right)\right)</math>. When such a limit exists, we say the sequence <math>(x_{n, m})</math> [[pointwise convergence|converges pointwise]] to <math>(y_m)</math>. The second one is called '''uniform limit''', denoted :<math>x_{n, m} \to y_m \quad \text{uniformly}</math>, :<math>\lim_{n \to \infty} x_{n, m} = y_m \quad \text{uniformly}</math>, :<math>x_{n, m} \rightrightarrows y_m </math>, or :<math>\underset{n\to\infty}{\mathrm{unif} \lim} \; x_{n, m} = y_m </math>, which means: :For each [[real number]] <math>\varepsilon > 0</math>, there exists a natural number <math>N(\varepsilon) > 0</math> such that, for every [[natural number]] <math>m</math> and for every natural number <math>n \geq N</math>, we have <math>|x_{n, m} - y_m| < \varepsilon</math>.<ref name="Habil"/> Symbolically, this is: :<math>\forall \varepsilon > 0 \left(\exists N \in \N \left( \forall m \in \mathbb{N} \left(\forall n \in \N \left(n \geq N \implies |x_{n, m} - y_m| < \varepsilon \right)\right)\right)\right)</math>. In this definition, the choice of <math>N</math> is independent of <math>m</math>. In other words, the choice of <math>N</math> is ''uniformly applicable'' to all natural numbers <math>m</math>. Hence, one can easily see that uniform convergence is a stronger property than pointwise convergence: the existence of uniform limit implies the existence and equality of pointwise limit: :If <math>x_{n, m} \to y_m</math> uniformly, then <math>x_{n, m} \to y_m</math> pointwise. When such a limit exists, we say the sequence <math>(x_{n, m})</math> [[uniform convergence|converges uniformly]] to <math>(y_m)</math>.
Edit summary
(Briefly describe your changes)
By publishing changes, you agree to the
Terms of Use
, and you irrevocably agree to release your contribution under the
CC BY-SA 4.0 License
and the
GFDL
. You agree that a hyperlink or URL is sufficient attribution under the Creative Commons license.
Cancel
Editing help
(opens in new window)