Open main menu
Home
Random
Recent changes
Special pages
Community portal
Preferences
About Wikipedia
Disclaimers
Incubator escapee wiki
Search
User menu
Talk
Dark mode
Contributions
Create account
Log in
Editing
Matrix exponential
(section)
Warning:
You are not logged in. Your IP address will be publicly visible if you make any edits. If you
log in
or
create an account
, your edits will be attributed to your username, along with other benefits.
Anti-spam check. Do
not
fill this in!
=== Rotation case === For a simple rotation in which the perpendicular unit vectors {{Math|'''a'''}} and {{Math|'''b'''}} specify a plane,<ref>in a Euclidean space</ref> the [[Rotation matrix#Exponential map|rotation matrix]] {{mvar|R}} can be expressed in terms of a similar exponential function involving a [[Euler's rotation theorem#Generators of rotations|generator]] {{mvar|G}} and angle {{mvar|θ}}.<ref>{{cite book|last=Weyl|first=Hermann|url=https://books.google.com/books?id=KCgZAQAAIAAJ&pg=PA142 |title=Space Time Matter| year=1952|publisher=Dover|isbn=978-0-486-60267-7|page=142}}</ref><ref>{{cite book|last1=Bjorken|first1=James D.| last2=Drell| first2=Sidney D.|title=Relativistic Quantum Mechanics|url=https://archive.org/details/relativisticquan0000bjor|url-access=registration | publisher=McGraw-Hill|year=1964|page=[https://archive.org/details/relativisticquan0000bjor/page/22 22]}}</ref> <math display="block">\begin{align} G &= \mathbf{ba}^\mathsf{T} - \mathbf{ab}^\mathsf{T} & P &= -G^2 = \mathbf{aa}^\mathsf{T} + \mathbf{bb}^\mathsf{T} \\ P^2 &= P & PG &= G = GP ~, \end{align}</math> <math display="block">\begin{align} R\left( \theta \right) = e^{G\theta} &= I + G\sin (\theta) + G^2(1 - \cos(\theta)) \\ &= I - P + P\cos (\theta) + G\sin (\theta ) ~.\\ \end{align}</math> The formula for the exponential results from reducing the powers of {{mvar|G}} in the series expansion and identifying the respective series coefficients of {{math|''G<sup>2</sup>''}} and {{mvar|G}} with {{math|−cos(''θ'')}} and {{math|sin(''θ'')}} respectively. The second expression here for {{math|''e<sup>Gθ</sup>''}} is the same as the expression for {{math|''R''(''θ'')}} in the article containing the derivation of the [[Euler's rotation theorem#Generators of rotations|generator]], {{math|1=''R''(''θ'') = ''e<sup>Gθ</sup>''}}. In two dimensions, if <math>a = \left[\begin{smallmatrix} 1 \\ 0 \end{smallmatrix}\right]</math> and <math>b = \left[ \begin{smallmatrix} 0 \\ 1 \end{smallmatrix} \right]</math>, then <math>G = \left[ \begin{smallmatrix} 0 & -1 \\ 1 & 0\end{smallmatrix} \right]</math>, <math>G^2 = \left[ \begin{smallmatrix}-1 & 0 \\ 0 & -1\end{smallmatrix} \right]</math>, and <math display="block">R(\theta) = \begin{bmatrix}\cos(\theta) & -\sin(\theta)\\ \sin(\theta) & \cos(\theta)\end{bmatrix} = I \cos(\theta) + G \sin(\theta)</math> reduces to the standard matrix for a plane rotation. The matrix {{math|1=''P'' = −''G''<sup>2</sup>}} [[Projection (linear algebra)|projects]] a vector onto the {{math|ab}}-plane and the rotation only affects this part of the vector. An example illustrating this is a rotation of {{math|1=30° = π/6}} in the plane spanned by {{math|'''a'''}} and {{math|'''b'''}}, <math display="block">\begin{align} \mathbf{a} &= \begin{bmatrix} 1 \\ 0 \\ 0 \\ \end{bmatrix} & \mathbf{b} &= \frac{1}{\sqrt{5}}\begin{bmatrix} 0 \\ 1 \\ 2 \\ \end{bmatrix} \end{align}</math> <math display="block">\begin{align} G = \frac{1}{\sqrt{5}}&\begin{bmatrix} 0 & -1 & -2 \\ 1 & 0 & 0 \\ 2 & 0 & 0 \\ \end{bmatrix} & P = -G^2 &= \frac{1}{5}\begin{bmatrix} 5 & 0 & 0 \\ 0 & 1 & 2 \\ 0 & 2 & 4 \\ \end{bmatrix} \\ P\begin{bmatrix} 1 \\ 2 \\ 3 \\ \end{bmatrix} = \frac{1}{5}&\begin{bmatrix} 5 \\ 8 \\ 16 \\ \end{bmatrix} = \mathbf{a} + \frac{8}{\sqrt{5}}\mathbf{b} & R\left(\frac{\pi}{6}\right) &= \frac{1}{10}\begin{bmatrix} 5\sqrt{3} & -\sqrt{5} & -2\sqrt{5} \\ \sqrt{5} & 8 + \sqrt{3} & -4 + 2\sqrt{3} \\ 2\sqrt{5} & -4 + 2\sqrt{3} & 2 + 4\sqrt{3} \\ \end{bmatrix} \\ \end{align}</math> Let {{math|1=''N'' = ''I'' - ''P''}}, so {{math|1=''N''<sup>2</sup> = ''N''}} and its products with {{math|''P''}} and {{math|''G''}} are zero. This will allow us to evaluate powers of {{math|''R''}}. <math display="block">\begin{align} R\left( \frac{\pi}{6} \right) &= N + P\frac{\sqrt{3}}{2} + G\frac{1}{2} \\ R\left( \frac{\pi}{6} \right)^2 &= N + P\frac{1}{2} + G\frac{\sqrt{3}}{2} \\ R\left( \frac{\pi}{6} \right)^3 &= N + G \\ R\left( \frac{\pi}{6} \right)^6 &= N - P \\ R\left( \frac{\pi}{6} \right)^{12} &= N + P = I \\ \end{align}</math> {{further|Rodrigues' rotation formula|Axis–angle representation#Exponential map from so(3) to SO(3)}}
Edit summary
(Briefly describe your changes)
By publishing changes, you agree to the
Terms of Use
, and you irrevocably agree to release your contribution under the
CC BY-SA 4.0 License
and the
GFDL
. You agree that a hyperlink or URL is sufficient attribution under the Creative Commons license.
Cancel
Editing help
(opens in new window)