Open main menu
Home
Random
Recent changes
Special pages
Community portal
Preferences
About Wikipedia
Disclaimers
Incubator escapee wiki
Search
User menu
Talk
Dark mode
Contributions
Create account
Log in
Editing
Matroid
(section)
Warning:
You are not logged in. Your IP address will be publicly visible if you make any edits. If you
log in
or
create an account
, your edits will be attributed to your username, along with other benefits.
Anti-spam check. Do
not
fill this in!
==Algorithms== Several important combinatorial optimization problems can be solved efficiently on every matroid. In particular: * Finding a '''maximum-weight independent set in a [[weighted matroid]]''' can be solved by a [[greedy algorithm]]. This fact may even be used to characterize matroids: if a family ''F'' of sets, closed under taking subsets, has the property that, no matter how the sets are weighted, the greedy algorithm finds a maximum-weight set in the family, then ''F'' must be the family of independent sets of a matroid.<ref name="Ox64">{{harvp|Oxley|1992|p=64}}</ref> * The '''[[matroid partitioning]] problem''' is to partition the elements of a matroid into as few independent sets as possible, and the '''matroid packing problem''' is to find as many disjoint spanning sets as possible. Both can be solved in polynomial time, and can be generalized to the problem of computing the rank or finding an independent set in a matroid sum. * A '''[[matroid intersection]]''' of two or more matroids on the same ground set is the family of sets that are simultaneously independent in each of the matroids. The problem of finding the largest set, or the maximum weighted set, in the intersection of two matroids can be found in [[polynomial time]], and provides a solution to many other important combinatorial optimization problems. For instance, [[maximum matching]] in [[bipartite graph]]s can be expressed as a problem of intersecting two [[partition matroid]]s. However, finding the largest set in an intersection of three or more matroids is [[NP-complete]].
Edit summary
(Briefly describe your changes)
By publishing changes, you agree to the
Terms of Use
, and you irrevocably agree to release your contribution under the
CC BY-SA 4.0 License
and the
GFDL
. You agree that a hyperlink or URL is sufficient attribution under the Creative Commons license.
Cancel
Editing help
(opens in new window)