Open main menu
Home
Random
Recent changes
Special pages
Community portal
Preferences
About Wikipedia
Disclaimers
Incubator escapee wiki
Search
User menu
Talk
Dark mode
Contributions
Create account
Log in
Editing
Monte Carlo method
(section)
Warning:
You are not logged in. Your IP address will be publicly visible if you make any edits. If you
log in
or
create an account
, your edits will be attributed to your username, along with other benefits.
Anti-spam check. Do
not
fill this in!
===Artificial intelligence for games=== {{Main|Monte Carlo tree search}} Monte Carlo methods have been developed into a technique called [[Monte-Carlo tree search]] that is useful for searching for the best move in a game. Possible moves are organized in a [[search tree]] and many random simulations are used to estimate the long-term potential of each move. A black box simulator represents the opponent's moves.<ref>{{cite web|url=http://sander.landofsand.com/publications/Monte-Carlo_Tree_Search_-_A_New_Framework_for_Game_AI.pdf |title=Monte-Carlo Tree Search: A New Framework for Game AI |author-first1=Guillaume |author-last1=Chaslot |author-first2=Sander |author-last2=Bakkes |author-first3=Istvan |author-last3=Szita |author-first4=Pieter |author-last4=Spronck |website=Sander.landofsand.com |access-date=October 28, 2017}}</ref> The Monte Carlo tree search (MCTS) method has four steps:<ref>{{cite web|url=http://mcts.ai/about/index.html |title=Monte Carlo Tree Search - About|access-date=May 15, 2013 |archive-url=https://web.archive.org/web/20151129023043/http://mcts.ai/about/index.html |archive-date=November 29, 2015 |url-status=dead}}</ref> # Starting at root node of the tree, select optimal child nodes until a leaf node is reached. # Expand the leaf node and choose one of its children. # Play a simulated game starting with that node. # Use the results of that simulated game to update the node and its ancestors. The net effect, over the course of many simulated games, is that the value of a node representing a move will go up or down, hopefully corresponding to whether or not that node represents a good move. Monte Carlo Tree Search has been used successfully to play games such as [[Go (game)|Go]],<ref>{{cite book|chapter=Parallel Monte-Carlo Tree Search |doi=10.1007/978-3-540-87608-3_6 |volume=5131 |pages=60–71 |series=Lecture Notes in Computer Science |year=2008 |author-last1=Chaslot |author-first1=Guillaume M. J. -B |author-last2=Winands |author-first2=Mark H. M. |author-last3=Van Den Herik |author-first3=H. Jaap |title=Computers and Games |isbn=978-3-540-87607-6 |citeseerx=10.1.1.159.4373}}</ref> [[Tantrix]],<ref>{{cite report|url=https://www.tantrix.com/Tantrix/TRobot/MCTS%20Final%20Report.pdf |title=Monte-Carlo Tree Search in the game of Tantrix: Cosc490 Final Report |author-last=Bruns |author-first=Pete}}</ref> [[Battleship (game)|Battleship]],<ref>{{cite web |url=http://www0.cs.ucl.ac.uk/staff/D.Silver/web/Publications_files/pomcp.pdf |title=Monte-Carlo Planning in Large POMDPs |author-first1=David |author-last1=Silver |author-first2=Joel |author-last2=Veness |website=0.cs.ucl.ac.uk |access-date=October 28, 2017 |archive-date=July 18, 2016 |archive-url=https://web.archive.org/web/20160718050040/http://www0.cs.ucl.ac.uk/staff/d.silver/web/Publications_files/pomcp.pdf |url-status=dead }}</ref> [[Havannah (board game)|Havannah]],<ref>{{cite book|chapter=Improving Monte–Carlo Tree Search in Havannah |doi=10.1007/978-3-642-17928-0_10 |volume=6515 |pages=105–115|bibcode=2011LNCS.6515..105L |series=Lecture Notes in Computer Science |year=2011 |author-last1=Lorentz |author-first1=Richard J. |title=Computers and Games |isbn=978-3-642-17927-3}}</ref> and [[Arimaa]].<ref>{{cite web|url=http://www.arimaa.com/arimaa/papers/ThomasJakl/bc-thesis.pdf |author-first=Tomas |author-last=Jakl |title=Arimaa challenge – comparison study of MCTS versus alpha-beta methods |website=Arimaa.com |access-date=October 28, 2017}}</ref> {{See also|Computer Go}}
Edit summary
(Briefly describe your changes)
By publishing changes, you agree to the
Terms of Use
, and you irrevocably agree to release your contribution under the
CC BY-SA 4.0 License
and the
GFDL
. You agree that a hyperlink or URL is sufficient attribution under the Creative Commons license.
Cancel
Editing help
(opens in new window)