Open main menu
Home
Random
Recent changes
Special pages
Community portal
Preferences
About Wikipedia
Disclaimers
Incubator escapee wiki
Search
User menu
Talk
Dark mode
Contributions
Create account
Log in
Editing
Net (mathematics)
(section)
Warning:
You are not logged in. Your IP address will be publicly visible if you make any edits. If you
log in
or
create an account
, your edits will be attributed to your username, along with other benefits.
Anti-spam check. Do
not
fill this in!
===Limits in a Cartesian product=== A net in the [[product space]] has a limit if and only if each projection has a limit. Explicitly, let <math>\left(X_i\right)_{i \in I}</math> be topological spaces, endow their [[Cartesian product]] <math display=block>{\textstyle\prod} X_\bull := \prod_{i \in I} X_i</math> with the [[product topology]], and that for every index <math>l \in I,</math> denote the canonical projection to <math>X_l</math> by <math display=block>\begin{alignat}{4} \pi_l :\;&& {\textstyle\prod} X_\bull &&\;\to\;& X_l \\[0.3ex] && \left(x_i\right)_{i \in I} &&\;\mapsto\;& x_l \\ \end{alignat}</math> Let <math>f_\bull = \left(f_a\right)_{a \in A}</math> be a net in <math>{\textstyle\prod} X_\bull</math> directed by <math>A</math> and for every index <math>i \in I,</math> let <math display=block>\pi_i\left(f_\bull\right) ~\stackrel{\scriptscriptstyle\text{def}}{=}~ \left(\pi_i\left(f_a\right)\right)_{a \in A}</math> denote the result of "plugging <math>f_\bull</math> into <math>\pi_i</math>", which results in the net <math>\pi_i\left(f_\bull\right) : A \to X_i.</math> It is sometimes useful to think of this definition in terms of [[function composition]]: the net <math>\pi_i\left(f_\bull\right)</math> is equal to the composition of the net <math>f_\bull : A \to {\textstyle\prod} X_\bull</math> with the projection <math>\pi_i : {\textstyle\prod} X_\bull \to X_i;</math> that is, <math>\pi_i\left(f_\bull\right) ~\stackrel{\scriptscriptstyle\text{def}}{=}~ \pi_i \,\circ\, f_\bull.</math> For any given point <math>L = \left(L_i\right)_{i \in I} \in {\textstyle\prod\limits_{i \in I}} X_i,</math> the net <math>f_\bull</math> converges to <math>L</math> in the product space <math>{\textstyle\prod} X_\bull</math> if and only if for every index <math>i \in I,</math> <math>\pi_i\left(f_\bull\right) \;\stackrel{\scriptscriptstyle\text{def}}{=}\; \left(\pi_i\left(f_a\right)\right)_{a \in A}</math> converges to <math>L_i</math> in <math>X_i.</math>{{sfn|Willard|2004|p=76}} And whenever the net <math>f_\bull</math> clusters at <math>L</math> in <math>{\textstyle\prod} X_\bull</math> then <math>\pi_i\left(f_\bull\right)</math> clusters at <math>L_i</math> for every index <math>i \in I.</math>{{sfn|Willard|2004|p=77}} However, the converse does not hold in general.{{sfn|Willard|2004|p=77}} For example, suppose <math>X_1 = X_2 = \Reals</math> and let <math>f_\bull = \left(f_a\right)_{a \in \N}</math> denote the sequence <math>(1, 1), (0, 0), (1, 1), (0, 0), \ldots</math> that alternates between <math>(1, 1)</math> and <math>(0, 0).</math> Then <math>L_1 := 0</math> and <math>L_2 := 1</math> are cluster points of both <math>\pi_1\left(f_\bull\right)</math> and <math>\pi_2\left(f_\bull\right)</math> in <math>X_1 \times X_2 = \Reals^2</math> but <math>\left(L_1, L_2\right) = (0, 1)</math> is not a cluster point of <math>f_\bull</math> since the open ball of radius <math>1</math> centered at <math>(0, 1)</math> does not contain even a single point <math>f_\bull</math>
Edit summary
(Briefly describe your changes)
By publishing changes, you agree to the
Terms of Use
, and you irrevocably agree to release your contribution under the
CC BY-SA 4.0 License
and the
GFDL
. You agree that a hyperlink or URL is sufficient attribution under the Creative Commons license.
Cancel
Editing help
(opens in new window)