Open main menu
Home
Random
Recent changes
Special pages
Community portal
Preferences
About Wikipedia
Disclaimers
Incubator escapee wiki
Search
User menu
Talk
Dark mode
Contributions
Create account
Log in
Editing
Noether's theorem
(section)
Warning:
You are not logged in. Your IP address will be publicly visible if you make any edits. If you
log in
or
create an account
, your edits will be attributed to your username, along with other benefits.
Anti-spam check. Do
not
fill this in!
=== Example 2: Conservation of center of momentum === Still considering 1-dimensional time, let :<math>\begin{align} \mathcal{S}\left[\vec{x}\right] & = \int \mathcal{L}\left[\vec{x}(t), \dot{\vec{x}}(t)\right] dt \\[3pt] & = \int \left[\sum^N_{\alpha=1} \frac{m_\alpha}{2}\left(\dot{\vec{x}}_\alpha\right)^2 - \sum_{\alpha<\beta} V_{\alpha\beta}\left(\vec{x}_\beta - \vec{x}_\alpha\right)\right] dt, \end{align}</math> for <math>N</math> Newtonian particles where the potential only depends pairwise upon the relative displacement. For <math>\vec{Q}</math>, consider the generator of Galilean transformations (i.e. a change in the frame of reference). In other words, :<math>Q_i\left[x^j_\alpha(t)\right] = t \delta^j_i.</math> And :<math>\begin{align} Q_i[\mathcal{L}] & = \sum_\alpha m_\alpha \dot{x}_\alpha^i - \sum_{\alpha<\beta}t \partial_i V_{\alpha\beta}\left(\vec{x}_\beta - \vec{x}_\alpha\right) \\ & = \sum_\alpha m_\alpha \dot{x}_\alpha^i. \end{align}</math> This has the form of <math display="inline">\frac{d}{dt}\sum_\alpha m_\alpha x^i_\alpha</math> so we can set :<math>\vec{f} = \sum_\alpha m_\alpha \vec{x}_\alpha.</math> Then, :<math>\begin{align} \vec{j} & = \sum_\alpha \left(\frac{\partial}{\partial \dot{\vec{x}}_\alpha} \mathcal{L}\right)\cdot\vec{Q}\left[\vec{x}_\alpha\right] - \vec{f} \\[6pt] & = \sum_\alpha \left(m_\alpha \dot{\vec{x}}_\alpha t - m_\alpha \vec{x}_\alpha\right) \\[3pt] & = \vec{P}t - M\vec{x}_{CM} \end{align}</math> where <math>\vec{P}</math> is the total momentum, ''M'' is the total mass and <math>\vec{x}_{CM}</math> is the center of mass. Noether's theorem states: :<math>\frac{d\vec{j}}{dt} = 0 \Rightarrow \vec{P} - M \dot{\vec{x}}_{CM} = 0.</math>
Edit summary
(Briefly describe your changes)
By publishing changes, you agree to the
Terms of Use
, and you irrevocably agree to release your contribution under the
CC BY-SA 4.0 License
and the
GFDL
. You agree that a hyperlink or URL is sufficient attribution under the Creative Commons license.
Cancel
Editing help
(opens in new window)