Open main menu
Home
Random
Recent changes
Special pages
Community portal
Preferences
About Wikipedia
Disclaimers
Incubator escapee wiki
Search
User menu
Talk
Dark mode
Contributions
Create account
Log in
Editing
Quadratic reciprocity
(section)
Warning:
You are not logged in. Your IP address will be publicly visible if you make any edits. If you
log in
or
create an account
, your edits will be attributed to your username, along with other benefits.
Anti-spam check. Do
not
fill this in!
===Gauss=== [[Image:Disquisitiones-Arithmeticae-p133.jpg|200px|thumb|Part of Article 131 in the first edition (1801) of the ''[[Disquisitiones Arithmeticae|Disquisitiones]]'', listing the 8 cases of quadratic reciprocity]] Gauss first proves<ref>Gauss, DA, arts 108–116</ref> the supplementary laws. He sets<ref>Gauss, DA, arts 117–123</ref> the basis for induction by proving the theorem for Β±3 and Β±5. Noting<ref>Gauss, DA, arts 130</ref> that it is easier to state for β3 and +5 than it is for +3 or β5, he states<ref>Gauss, DA, Art 131</ref> the general theorem in the form: :If ''p'' is a prime of the form 4''n'' + 1 then ''p'', but if ''p'' is of the form 4''n'' + 3 then β''p'', is a quadratic residue (resp. nonresidue) of every prime, which, with a positive sign, is a residue (resp. nonresidue) of ''p''. In the next sentence, he christens it the "fundamental theorem" (Gauss never used the word "reciprocity"). Introducing the notation ''a'' R ''b'' (resp. ''a'' N ''b'') to mean ''a'' is a quadratic residue (resp. nonresidue) (mod ''b''), and letting ''a'', ''a''′, etc. represent positive primes β‘ 1 (mod 4) and ''b'', ''b''′, etc. positive primes β‘ 3 (mod 4), he breaks it out into the same 8 cases as Legendre: {| class="wikitable" |+ ! width="50"|Case ! width="80"|If ! width="80"|Then |- ! 1) | Β±''a'' R ''a''′ | Β±''a''′ R ''a'' |- ! 2) | Β±''a'' N ''a''′ | Β±''a''′ N ''a'' |- ! 3) | +''a'' R ''b''<br>β''a'' N ''b'' | Β±''b'' R ''a'' |- ! 4) | +''a'' N ''b''<br>β''a'' R ''b'' | Β±''b'' N ''a'' |- ! 5) | Β±''b'' R ''a'' | +''a'' R ''b''<br>β''a'' N ''b'' |- ! 6) | Β±''b'' N ''a'' | +''a'' N ''b''<br>β''a'' R ''b'' |- ! 7) | +''b'' R ''b''′<br>β''b'' N ''b''′ | β''b''′ N ''b''<br>+''b''′ R ''b'' |- ! 8) | β''b'' N ''b''′<br>+''b'' R ''b''′ | +''b''′ R ''b''<br>β''b''′ N ''b'' |} In the next Article he generalizes this to what are basically the rules for the [[#Jacobi symbol|Jacobi symbol (below)]]. Letting ''A'', ''A''′, etc. represent any (prime or composite) positive numbers β‘ 1 (mod 4) and ''B'', ''B''′, etc. positive numbers β‘ 3 (mod 4): {| class="wikitable" |+ ! width="50"|Case ! width="80"|If ! width="80"|Then |- ! 9) | Β±''a'' R ''A'' | Β±''A'' R ''a'' |- ! 10) | Β±''b'' R ''A'' | +''A'' R ''b''<br>β''A'' N ''b'' |- ! 11) | +''a'' R ''B'' | Β±''B'' R ''a'' |- ! 12) | β''a'' R ''B'' | Β±''B'' N ''a'' |- ! 13) | +''b'' R ''B'' | β''B'' N ''b''<br>+''N'' R ''b'' |- ! 14) | β''b'' R ''B'' | +''B'' R ''b''<br>β''B'' N ''b'' |} All of these cases take the form "if a prime is a residue (mod a composite), then the composite is a residue or nonresidue (mod the prime), depending on the congruences (mod 4)". He proves that these follow from cases 1) - 8). Gauss needed, and was able to prove,<ref>Gauss, DA, arts. 125–129</ref> a lemma similar to the one Legendre needed: :'''Gauss's Lemma.''' If ''p'' is a prime congruent to 1 modulo 8 then there exists an odd prime ''q'' such that: ::<math>q <2\sqrt p+1 \quad \text{and} \quad \left(\frac{p}{q}\right) = -1.</math> The proof of quadratic reciprocity uses [[Mathematical induction#Complete induction|complete induction]]. :'''Gauss's Version in Legendre Symbols.''' ::<math>\left(\frac{p}{q}\right) = \begin{cases} \left(\frac{q}{p}\right) & q \equiv 1 \bmod{4} \\ \left(\frac{-q}{p}\right) & q \equiv 3 \bmod{4} \end{cases}</math> These can be combined: :'''Gauss's Combined Version in Legendre Symbols.''' Let ::<math>q^* = (-1)^{\frac{q-1}{2}}q.</math> :In other words: ::<math>|q^*|=|q| \quad \text{and} \quad q^*\equiv 1 \bmod{4}.</math> :Then: ::<math> \left(\frac{p}{q}\right) = \left(\frac{q^*}{p}\right).</math> A number of proofs of the theorem, especially those based on [[Gauss sum]]s<ref>Because the basic Gauss sum equals <math>\sqrt{q^*}.</math></ref> or the splitting of primes in [[algebraic number field]]s,<ref>Because the quadratic field <math>\Q(\sqrt{q^*})</math> is a subfield of the cyclotomic field <math>\Q(e^{\frac{2\pi i}{q}})</math></ref><ref>See [[#Connection with cyclotomic fields|Connection with cyclotomic fields]] below.</ref> derive this formula.
Edit summary
(Briefly describe your changes)
By publishing changes, you agree to the
Terms of Use
, and you irrevocably agree to release your contribution under the
CC BY-SA 4.0 License
and the
GFDL
. You agree that a hyperlink or URL is sufficient attribution under the Creative Commons license.
Cancel
Editing help
(opens in new window)