Open main menu
Home
Random
Recent changes
Special pages
Community portal
Preferences
About Wikipedia
Disclaimers
Incubator escapee wiki
Search
User menu
Talk
Dark mode
Contributions
Create account
Log in
Editing
Scale-free network
(section)
Warning:
You are not logged in. Your IP address will be publicly visible if you make any edits. If you
log in
or
create an account
, your edits will be attributed to your username, along with other benefits.
Anti-spam check. Do
not
fill this in!
==Scale-free ideal networks== In the context of [[network theory]] a '''scale-free ideal network''' is a [[random network]] with a [[degree distribution]] following the [[Scale-Free Ideal Gas|scale-free ideal gas]] [[Probability density function|density distribution]]. These networks are able to reproduce city-size distributions and electoral results by unraveling the size distribution of social groups with information theory on complex networks when a competitive cluster growth process is applied to the network.<ref>{{cite arXiv |author1=A. Hernando |author2=D. Villuendas |author3=C. Vesperinas |author4=M. Abad |author5=A. Plastino |eprint=0905.3704 |class=physics.soc-ph |title=Unravelling the size distribution of social groups with information theory on complex networks |year=2009 }}, submitted to ''European Physical Journal B''</ref><ref> {{cite journal |author1=André A. Moreira |author2=Demétrius R. Paula |author3=Raimundo N. Costa Filho |author4=José S. Andrade, Jr. |arxiv=cond-mat/0603272 |title=Competitive cluster growth in complex networks |year=2006 |doi=10.1103/PhysRevE.73.065101 |volume=73 |issue=6 |journal=Physical Review E|bibcode=2006PhRvE..73f5101M |pmid=16906890 |page=065101|s2cid=45651735 }}</ref> In models of scale-free ideal networks it is possible to demonstrate that [[Dunbar's number]] is the cause of the phenomenon known as the '[[six degrees of separation]]'.
Edit summary
(Briefly describe your changes)
By publishing changes, you agree to the
Terms of Use
, and you irrevocably agree to release your contribution under the
CC BY-SA 4.0 License
and the
GFDL
. You agree that a hyperlink or URL is sufficient attribution under the Creative Commons license.
Cancel
Editing help
(opens in new window)