Open main menu
Home
Random
Recent changes
Special pages
Community portal
Preferences
About Wikipedia
Disclaimers
Incubator escapee wiki
Search
User menu
Talk
Dark mode
Contributions
Create account
Log in
Editing
Trace (linear algebra)
(section)
Warning:
You are not logged in. Your IP address will be publicly visible if you make any edits. If you
log in
or
create an account
, your edits will be attributed to your username, along with other benefits.
Anti-spam check. Do
not
fill this in!
=== Bilinear forms === The [[bilinear form]] (where {{math|'''X'''}}, {{math|'''Y'''}} are square matrices) <math display="block">B(\mathbf{X}, \mathbf{Y}) = \operatorname{tr}(\operatorname{ad}(\mathbf{X})\operatorname{ad}(\mathbf{Y}))</math> : where <math>\operatorname{ad}(\mathbf{X})\mathbf{Y} = [\mathbf{X}, \mathbf{Y}] = \mathbf{X}\mathbf{Y} - \mathbf{Y}\mathbf{X}</math> : and for orientation, if <math>\operatorname{det} \mathbf{Y} \ne 0 </math> :: then <math>\operatorname{ad}(\mathbf{X}) = \mathbf{X} - \mathbf{Y}\mathbf{X}\mathbf{Y}^{-1} ~.</math> <math> B(\mathbf{X}, \mathbf{Y})</math> is called the [[Killing form]]; it is used to classify [[Lie algebra]]s. The trace defines a bilinear form: <math display="block">(\mathbf{X}, \mathbf{Y}) \mapsto \operatorname{tr}(\mathbf{X}\mathbf{Y}) ~.</math> The form is symmetric, non-degenerate<ref group=note>This follows from the fact that {{math|1=tr('''A'''*'''A''') = 0}} [[if and only if]] {{math|1='''A''' = '''0'''}}.</ref> and associative in the sense that: <math display="block">\operatorname{tr}(\mathbf{X}[\mathbf{Y}, \mathbf{Z}]) = \operatorname{tr}([\mathbf{X}, \mathbf{Y}]\mathbf{Z}).</math> For a complex simple Lie algebra (such as {{math|<math>\mathfrak{sl}</math><sub>''n''</sub>}}), every such bilinear form is proportional to each other; in particular, to the Killing form{{Citation needed|reason=Either a source or proof is needed|date=June 2022}}. Two matrices {{math|'''X'''}} and {{math|'''Y'''}} are said to be ''trace orthogonal'' if <math display="block">\operatorname{tr}(\mathbf{X}\mathbf{Y}) = 0.</math> There is a generalization to a general representation <math>(\rho,\mathfrak{g},V)</math> of a Lie algebra <math>\mathfrak{g}</math>, such that <math>\rho</math> is a homomorphism of Lie algebras <math>\rho: \mathfrak{g} \rightarrow \text{End}(V).</math> The trace form <math>\text{tr}_V</math> on <math>\text{End}(V)</math> is defined as above. The bilinear form <math display="block">\phi(\mathbf{X},\mathbf{Y}) = \text{tr}_V(\rho(\mathbf{X})\rho(\mathbf{Y}))</math> is symmetric and invariant due to cyclicity.
Edit summary
(Briefly describe your changes)
By publishing changes, you agree to the
Terms of Use
, and you irrevocably agree to release your contribution under the
CC BY-SA 4.0 License
and the
GFDL
. You agree that a hyperlink or URL is sufficient attribution under the Creative Commons license.
Cancel
Editing help
(opens in new window)