Open main menu
Home
Random
Recent changes
Special pages
Community portal
Preferences
About Wikipedia
Disclaimers
Incubator escapee wiki
Search
User menu
Talk
Dark mode
Contributions
Create account
Log in
Editing
Von Neumann algebra
(section)
Warning:
You are not logged in. Your IP address will be publicly visible if you make any edits. If you
log in
or
create an account
, your edits will be attributed to your username, along with other benefits.
Anti-spam check. Do
not
fill this in!
==References== {{reflist|group=note}} {{reflist}} *{{citation |first1=H. |last1=Araki |first2=E. J. |last2=Woods |title=A classification of factors |journal=Publ. Res. Inst. Math. Sci. Ser. A |volume=4 |year=1968 |issue=1 |pages=51–130 |doi=10.2977/prims/1195195263 |doi-access=free}}{{MathSciNet|id=0244773}} *{{citation |first=B. |last=Blackadar |title=Operator algebras |isbn=3-540-28486-9 |publisher=Springer |year=2005}}, {{citation |url=http://wolfweb.unr.edu/homepage/bruceb/Cycr.pdf |title=corrected manuscript |year=2013}} *{{citation |doi=10.2307/1971057 |first=A. |last=Connes |title=Classification of Injective Factors |journal=Annals of Mathematics |series=Second Series |volume=104 |issue=1 |year=1976 |pages=73–115 |jstor=1971057}} *{{citation |first=A. |last=Connes |url=https://archive.org/details/noncommutativege0000conn |title=Non-commutative geometry |isbn=0-12-185860-X |year=1994 |publisher=Academic Press |url-access=registration}}. *{{citation |first=J.|last=Dixmier |title=Von Neumann algebras |isbn=0-444-86308-7 |year=1981|publisher=凡異出版社 }} (A translation of {{citation |first=J. |last=Dixmier |title=Les algèbres d'opérateurs dans l'espace hilbertien: algèbres de von Neumann |publisher=Gauthier-Villars |year=1957}}, the first book about von Neumann algebras.) *{{citation |first=V.F.R. |last=Jones |year=2003 |url=http://www.math.berkeley.edu/~vfr/MATH20909/VonNeumann2009.pdf |title=von Neumann algebras}}; incomplete notes from a course. *{{citation |first=R.P.|last=Kostecki |year=2013 |arxiv=1307.4818 |title=W*-algebras and noncommutative integration |bibcode=2013arXiv1307.4818P}}. *{{citation |first=Dusa |last=McDuff |author-link=Dusa McDuff |title=Uncountably many II<sub>1</sub> factors |journal=Annals of Mathematics |series=Second Series |volume=90 |year=1969 |pages=372–377 |doi=10.2307/1970730 |jstor=1970730 |issue=2}} *{{citation |last=Murray |first=F. J.|contribution=The rings of operators papers |title=The legacy of John von Neumann (Hempstead, NY, 1988) |pages=57–60 |series=Proc. Sympos. Pure Math. |year=2006 |volume=50 |publisher=Amer. Math. Soc. |isbn=0-8218-4219-6 |location=Providence, RI.}} A historical account of the discovery of von Neumann algebras. *{{citation |first1=F.J. |last1=Murray |first2=J. |last2=von Neumann |title=On rings of operators |journal=Annals of Mathematics |series=Second Series |volume=37 |year=1936 |pages=116–229 |doi=10.2307/1968693 |jstor=1968693 |issue=1}}. This paper gives their basic properties and the division into types I, II, and III, and in particular finds factors not of type I. *{{citation |first1=F.J. |last1=Murray |first2=J. |last2=von Neumann |title=On rings of operators II |journal=Trans. Amer. Math. Soc. |volume=41 |year=1937 |pages=208–248 |doi=10.2307/1989620 |issue=2 |jstor=1989620 |publisher=American Mathematical Society |doi-access=free}}. This is a continuation of the previous paper, that studies properties of the trace of a factor. *{{citation |first1=F.J.|last1=Murray |first2=J. |last2=von Neumann |title=On rings of operators IV |journal=Annals of Mathematics |series=Second Series |volume=44 |year=1943 |pages=716–808 |doi=10.2307/1969107 |jstor=1969107 |issue=4}}. This studies when factors are isomorphic, and in particular shows that all approximately finite factors of type II<sub>1</sub> are isomorphic. *{{citation |doi=10.2307/1970364 |title=Representations of Uniformly Hyperfinite Algebras and Their Associated von Neumann Rings |first=Robert T. |last=Powers |author1-link=Robert T. Powers |journal=Annals of Mathematics |series=Second Series |volume=86 |issue=1 |year=1967 |pages=138–171 |jstor=1970364}} *{{citation |first=S. |last=Sakai |author-link=Shoichiro Sakai |title=C*-algebras and W*-algebras |publisher=Springer |year=1971 |isbn=3-540-63633-1}} *{{citation |author-link=Jacob T. Schwartz |first=Jacob |last=Schwartz |title=W-* Algebras |year=1967 |publisher=Gordon & Breach Publishing |isbn=0-677-00670-5}} *{{springer|id=V/v096900|title=von Neumann algebra|first=A.I.|last=Shtern}} *{{citation |first=M. |last=Takesaki |title=Theory of Operator Algebras I, II, III |isbn=3-540-42248-X |year=1979|publisher=Springer }} <!-- Please do NOT change von to Von: this breaks the citation links. --> *{{citation |first=J. |last=von Neumann |doi=10.1007/BF01782352 |title=Zur Algebra der Funktionaloperationen und Theorie der normalen Operatoren |journal= Math. Ann. |volume=102 |issue=1 |year=1930 |pages=370–427 |bibcode=1930MatAn.102..685E |s2cid=121141866}}. The original paper on von Neumann algebras. *{{citation |doi=10.2307/1968692 |first=J. |last=von Neumann |title=On a Certain Topology for Rings of Operators |journal=Annals of Mathematics |series=Second Series |volume=37 |issue=1 |year=1936 |pages=111–115 |jstor=1968692}}. This defines the ultrastrong topology. *{{citation |first=J. |last=von Neumann |url=http://www.numdam.org/item?id=CM_1939__6__1_0 |title=On infinite direct products |journal=Compos. Math. |volume=6 |year=1938 |pages=1–77}}. This discusses infinite tensor products of Hilbert spaces and the algebras acting on them. *{{citation |first=J. |last=von Neumann |title=On rings of operators III |journal=Annals of Mathematics |series=Second Series |volume=41 |year=1940 |pages=94–161 |doi=10.2307/1968823 |jstor=1968823 |issue=1}}. This shows the existence of factors of type III. *{{citation |doi=10.2307/1969106 |first=J. |last=von Neumann |title=On Some Algebraical Properties of Operator Rings |journal=Annals of Mathematics |series=Second Series |volume=44 |issue=4 |year=1943 |pages=709–715 |jstor=1969106}}. This shows that some apparently topological properties in von Neumann algebras can be defined purely algebraically. *{{citation |doi=10.2307/1969463 |first=J. |last=von Neumann |title=On Rings of Operators. Reduction Theory |journal=Annals of Mathematics |series=Second Series |volume=50 |issue=2 |year=1949 |pages=401–485 |jstor=1969463}}. This discusses how to write a von Neumann algebra as a sum or integral of factors. *{{citation |last=von Neumann |first=John |title=Collected Works, Volume III: Rings of Operators |editor-first=A.H. |editor-last=Taub |location=NY |publisher=Pergamon Press |year=1961}}. Reprints von Neumann's papers on von Neumann algebras. *{{citation |first=A. J. |last=Wassermann |author-link=Antony Wassermann |year=1991 |url=http://iml.univ-mrs.fr/~wasserm/OHS.ps |title=Operators on Hilbert space}} {{Spectral theory}} {{Hilbert space}} {{Banach spaces}} {{functional analysis}} {{Authority control}} [[Category:Operator theory]] [[Category:Von Neumann algebras|*]] [[Category:John von Neumann]]
Edit summary
(Briefly describe your changes)
By publishing changes, you agree to the
Terms of Use
, and you irrevocably agree to release your contribution under the
CC BY-SA 4.0 License
and the
GFDL
. You agree that a hyperlink or URL is sufficient attribution under the Creative Commons license.
Cancel
Editing help
(opens in new window)