Open main menu
Home
Random
Recent changes
Special pages
Community portal
Preferences
About Wikipedia
Disclaimers
Incubator escapee wiki
Search
User menu
Talk
Dark mode
Contributions
Create account
Log in
Editing
Weibull distribution
(section)
Warning:
You are not logged in. Your IP address will be publicly visible if you make any edits. If you
log in
or
create an account
, your edits will be attributed to your username, along with other benefits.
Anti-spam check. Do
not
fill this in!
==Related distributions== * If <math>W \sim \mathrm{Weibull}(\lambda, k)</math>, then the variable <math>G = \log W</math> is Gumbel (minimum) distributed with location parameter <math>\mu = \log \lambda</math> and scale parameter <math>\beta = 1/k</math>. That is, <math>G \sim \mathrm{Gumbel}_{\min}(\log \lambda, 1/k)</math>. * {{paragraph break}}A Weibull distribution is a [[generalized gamma distribution]] with both shape parameters equal to ''k''.<!-- --> * {{paragraph break}}The translated Weibull distribution (or 3-parameter Weibull) contains an additional parameter.<ref name="JKB"/> It has the [[probability density function]] <blockquote><math>f(x;k,\lambda, \theta)={k \over \lambda} \left({x - \theta \over \lambda}\right)^{k-1} e^{-\left({x-\theta \over \lambda}\right)^k}\,</math></blockquote> {{paragraph break}}for <math>x \geq \theta</math> and <math>f(x; k, \lambda, \theta) = 0</math> for <math>x < \theta</math>, where <math>k > 0</math> is the [[shape parameter]], <math>\lambda > 0</math> is the [[scale parameter]] and <math>\theta</math> is the [[location parameter]] of the distribution. <math>\theta</math> value sets an initial failure-free time before the regular Weibull process begins. When <math>\theta = 0</math>, this reduces to the 2-parameter distribution.<!-- --> * {{paragraph break}}The Weibull distribution can be characterized as the distribution of a random variable <math>W</math> such that the random variable <blockquote><math>X = \left(\frac{W}{\lambda}\right)^k</math></blockquote> {{paragraph break}}is the standard [[exponential distribution]] with intensity 1.<ref name="JKB"/><!-- --> * This implies that the Weibull distribution can also be characterized in terms of a [[Uniform distribution (continuous)|uniform distribution]]: if <math>U</math> is uniformly distributed on <math>(0,1)</math>, then the random variable <math>W = \lambda(-\ln(U))^{1/k}\,</math> is Weibull distributed with parameters <math>k</math> and <math>\lambda</math>. Note that <math>-\ln(U)</math> here is equivalent to <math>X</math> just above. This leads to an easily implemented numerical scheme for simulating a Weibull distribution.<!-- --> * The Weibull distribution interpolates between the exponential distribution with intensity <math>1/\lambda</math> when <math>k = 1</math> and a [[Rayleigh distribution]] of mode <math>\sigma = \lambda/\sqrt{2}</math> when <math>k = 2</math>.<!-- --> * The Weibull distribution (usually sufficient in [[reliability engineering]]) is a special case of the three parameter [[exponentiated Weibull distribution]] where the additional exponent equals 1. The exponentiated Weibull distribution accommodates [[Unimodal function|unimodal]], [[Bathtub curve|bathtub shaped]]<ref>{{cite web|url=http://www.sys-ev.com/reliability01.htm|title=System evolution and reliability of systems|publisher=Sysev (Belgium)|date=2010-01-01}}</ref> and [[Monotonic function|monotone]] [[failure rate]]s.<!-- --> * {{paragraph break}}The Weibull distribution is a special case of the [[generalized extreme value distribution]]. It was in this connection that the distribution was first identified by [[Maurice Fréchet]] in 1927.<ref>{{cite book|last=Montgomery|first=Douglas|title=Introduction to statistical quality control|publisher=John Wiley|location=[S.l.]|isbn=9781118146811|page=95|date=2012-06-19}}</ref> The closely related [[Fréchet distribution]], named for this work, has the probability density function <blockquote><math>f_{\rm{Frechet}}(x;k,\lambda)=\frac{k}{\lambda} \left(\frac{x}{\lambda}\right)^{-1-k} e^{-(x/\lambda)^{-k}} = f_{\rm{Weibull}}(x;-k,\lambda).</math></blockquote><!-- --> * The distribution of a random variable that is defined as the minimum of several random variables, each having a different Weibull distribution, is a [[poly-Weibull distribution]].<!-- --> * {{paragraph break}}The Weibull distribution was first applied by {{harvtxt|Rosin|Rammler|1933}} to describe particle size distributions. It is widely used in [[mineral processing]] to describe [[particle size distribution]]s in [[comminution]] processes. In this context the cumulative distribution is given by <blockquote><math>f(x;P_{\rm{80}},m) = \begin{cases} 1-e^{\ln\left(0.2\right)\left(\frac{x}{P_{\rm{80}}}\right)^m} & x\geq0 ,\\ 0 & x<0 ,\end{cases}</math></blockquote> {{paragraph break}}where ** <math>x</math> is the particle size ** <math>P_{\rm{80}}</math> is the 80th percentile of the particle size distribution ** <math>m</math> is a parameter describing the spread of the distribution<!-- --> * Because of its availability in [[spreadsheet]]s, it is also used where the underlying behavior is actually better modeled by an [[Erlang distribution]].<ref>{{cite journal | last1 = Chatfield | first1 = C. | last2 = Goodhardt | first2 = G.J. | year = 1973 | title = A Consumer Purchasing Model with Erlang Interpurchase Times | journal = Journal of the American Statistical Association | volume = 68 | issue = 344| pages = 828–835 | doi=10.1080/01621459.1973.10481432}}</ref> * If <math>X \sim \mathrm{Weibull}(\lambda,\frac{1}{2})</math> then <math> \sqrt{X} \sim \mathrm{Exponential}(\frac{1}{\sqrt{\lambda}})</math> ([[Exponential distribution]]) * {{paragraph break}}For the same values of k, the [[Gamma distribution]] takes on similar shapes, but the Weibull distribution is more [[Kurtosis#Excess kurtosis|platykurtic]]. * {{paragraph break}} From the viewpoint of the [[Stable count distribution]], <math> k </math> can be regarded as Lévy's stability parameter. A Weibull distribution can be decomposed to an integral of kernel density where the kernel is either a [[Laplace distribution]] <math>F(x;1,\lambda)</math> or a [[Rayleigh distribution]] <math>F(x;2,\lambda)</math>: <blockquote><math> F(x;k,\lambda) = \begin{cases} \displaystyle\int_0^\infty \frac{1}{\nu} \, F(x;1,\lambda\nu) \left( \Gamma \left( \frac{1}{k}+1 \right) \mathfrak{N}_k(\nu) \right) \, d\nu , & 1 \geq k > 0; \text{or } \\ \displaystyle\int_0^\infty \frac{1}{s} \, F(x;2,\sqrt{2} \lambda s) \left( \sqrt{\frac{2}{\pi}} \, \Gamma \left( \frac{1}{k}+1 \right) V_k(s) \right) \, ds , & 2 \geq k > 0; \end{cases} </math></blockquote> {{paragraph break}}where <math>\mathfrak{N}_k(\nu)</math> is the [[Stable count distribution]] and <math>V_k(s)</math> is the [[Stable_count_distribution#Stable_Vol_Distribution|Stable vol distribution]].
Edit summary
(Briefly describe your changes)
By publishing changes, you agree to the
Terms of Use
, and you irrevocably agree to release your contribution under the
CC BY-SA 4.0 License
and the
GFDL
. You agree that a hyperlink or URL is sufficient attribution under the Creative Commons license.
Cancel
Editing help
(opens in new window)