Open main menu
Home
Random
Recent changes
Special pages
Community portal
Preferences
About Wikipedia
Disclaimers
Incubator escapee wiki
Search
User menu
Talk
Dark mode
Contributions
Create account
Log in
Editing
Bernoulli number
(section)
Warning:
You are not logged in. Your IP address will be publicly visible if you make any edits. If you
log in
or
create an account
, your edits will be attributed to your username, along with other benefits.
Anti-spam check. Do
not
fill this in!
=== Connection with Stirling numbers of the first kind === The two main formulas relating the unsigned [[Stirling numbers of the first kind]] {{math|<big><big>[</big></big>{{su|p=''n''|b=''m''|a=c}}<big><big>]</big></big>}} to the Bernoulli numbers (with {{math|''B''<sub>1</sub> {{=}} +{{sfrac|1|2}}}}) are : <math> \frac{1}{m!}\sum_{k=0}^m (-1)^{k} \left[{m+1\atop k+1}\right] B_k = \frac{1}{m+1}, </math> and the inversion of this sum (for {{math|''n'' ≥ 0}}, {{math|''m'' ≥ 0}}) : <math> \frac{1}{m!}\sum_{k=0}^m (-1)^k \left[{m+1\atop k+1}\right] B_{n+k} = A_{n,m}. </math> Here the number {{math|''A''<sub>''n'',''m''</sub>}} are the rational Akiyama–Tanigawa numbers, the first few of which are displayed in the following table. :{| class="wikitable" style="text-align:center" |+ Akiyama–Tanigawa number ! {{diagonal split header|{{mvar|n}}|{{mvar|m}}}}!!0!!1!!2!!3!!4 |- ! 0 | 1 || {{sfrac|1|2}} || {{sfrac|1|3}} || {{sfrac|1|4}} || {{sfrac|1|5}} |- ! 1 | {{sfrac|1|2}} || {{sfrac|1|3}} || {{sfrac|1|4}} || {{sfrac|1|5}} || ... |- ! 2 | {{sfrac|1|6}} || {{sfrac|1|6}} || {{sfrac|3|20}} || ... || ... |- ! 3 | 0 || {{sfrac|1|30}} || ... || ... || ... |- ! 4 | −{{sfrac|1|30}} || ... || ... || ... || ... |} The Akiyama–Tanigawa numbers satisfy a simple recurrence relation which can be exploited to iteratively compute the Bernoulli numbers. This leads to the algorithm shown in the section 'algorithmic description' above. See {{OEIS2C|id=A051714}}/{{OEIS2C|id=A051715}}. An ''autosequence'' is a sequence which has its inverse binomial transform equal to the signed sequence. If the main diagonal is zeroes = {{OEIS2C|id=A000004}}, the autosequence is of the first kind. Example: {{OEIS2C|id=A000045}}, the Fibonacci numbers. If the main diagonal is the first upper diagonal multiplied by 2, it is of the second kind. Example: {{OEIS2C|id=A164555}}/{{OEIS2C|id=A027642}}, the second Bernoulli numbers (see {{OEIS2C|id=A190339}}). The Akiyama–Tanigawa transform applied to {{math|''2''<sup>−''n''</sup>}} = 1/{{OEIS2C|id=A000079}} leads to {{OEIS2C|id=A198631}} (''n'') / {{OEIS2C|id=A06519}} (''n'' + 1). Hence: :{| class="wikitable" style="text-align:center" |+ Akiyama–Tanigawa transform for the second Euler numbers |- ! {{diagonal split header|{{mvar|n}}|{{mvar|m}}}} !! 0 !! 1 !! 2 !! 3 !! 4 |- ! 0 | 1 || {{sfrac|1|2}} || {{sfrac|1|4}} || {{sfrac|1|8}} || {{sfrac|1|16}} |- ! 1 | {{sfrac|1|2}} || {{sfrac|1|2}} || {{sfrac|3|8}} || {{sfrac|1|4}} || ... |- ! 2 | 0 || {{sfrac|1|4}} || {{sfrac|3|8}} || ... || ... |- ! 3 | −{{sfrac|1|4}} || −{{sfrac|1|4}} || ... || ... || ... |- ! 4 | 0 || ... || ... || ... || ... |} See {{OEIS2C|id=A209308}} and {{OEIS2C|id=A227577}}. {{OEIS2C|id=A198631}} ({{math|''n''}}) / {{OEIS2C|id=A006519}} ({{math|''n'' + 1}}) are the second (fractional) Euler numbers and an autosequence of the second kind. :({{sfrac|{{OEIS2C|id=A164555}} ({{math|''n'' + 2}})|{{OEIS2C|id=A027642}} ({{math|''n'' + 2}})}} = {{math|{{sfrac|1|6}}, 0, −{{sfrac|1|30}}, 0, {{sfrac|1|42}}, ...}}) × ( {{math|{{sfrac|2<sup>''n'' + 3</sup> − 2|''n'' + 2}}}} = {{math|3, {{sfrac|14|3}}, {{sfrac|15|2}}, {{sfrac|62|5}}, 21, ...}}) = {{sfrac|{{OEIS2C|id=A198631}} ({{math|''n'' + 1}})|{{OEIS2C|id=A006519}} ({{math|''n'' + 2}})}} = {{math|{{sfrac|1|2}}, 0, −{{sfrac|1|4}}, 0, {{sfrac|1|2}}, ...}}. Also valuable for {{OEIS2C|id=A027641}} / {{OEIS2C|id=A027642}} (see [[#Connection with Worpitzky numbers|Connection with Worpitzky numbers]]).
Edit summary
(Briefly describe your changes)
By publishing changes, you agree to the
Terms of Use
, and you irrevocably agree to release your contribution under the
CC BY-SA 4.0 License
and the
GFDL
. You agree that a hyperlink or URL is sufficient attribution under the Creative Commons license.
Cancel
Editing help
(opens in new window)