Open main menu
Home
Random
Recent changes
Special pages
Community portal
Preferences
About Wikipedia
Disclaimers
Incubator escapee wiki
Search
User menu
Talk
Dark mode
Contributions
Create account
Log in
Editing
Canonical transformation
(section)
Warning:
You are not logged in. Your IP address will be publicly visible if you make any edits. If you
log in
or
create an account
, your edits will be attributed to your username, along with other benefits.
Anti-spam check. Do
not
fill this in!
=== Canonical transformation relations === By solving for: <math display="block">\lambda \left[ \mathbf{p} \cdot \dot{\mathbf{q}} - H(\mathbf{q}, \mathbf{p}, t) \right] = \mathbf{P} \cdot \dot{\mathbf{Q}} - K(\mathbf{Q}, \mathbf{P}, t) + \frac{dG}{dt} </math> with various forms of generating function, the relation between K and H goes as <math display="inline">\frac{\partial G}{\partial t} = K-\lambda H </math> instead, which also applies for <math display="inline">\lambda = 1 </math> case. All results presented below can also be obtained by replacing <math display="inline">q \rightarrow \sqrt{\lambda}q </math>, <math display="inline">p \rightarrow \sqrt{\lambda}p </math> and <math display="inline">H \rightarrow {\lambda}H </math> from known solutions, since it retains the form of [[Hamilton's equations]]. The extended canonical transformations are hence said to be result of a canonical transformation (<math display="inline">\lambda = 1 </math>) and a trivial canonical transformation (<math display="inline">\lambda \neq 1 </math>) which has <math display="inline">M J M^T = \lambda J </math> (for the given example, <math display="inline">M = \sqrt{\lambda} I </math> which satisfies the condition).<ref>{{Harvnb|Giacaglia|1972|p=18-19}}</ref> Using same steps previously used in previous generalization, with <math display="inline">\frac{\partial G}{\partial t} = K-\lambda H </math> in the general case, and retaining the equation <math display="inline">J \left(\nabla_\varepsilon \frac{\partial g}{\partial t} \right) = \frac{\partial \varepsilon}{\partial t} </math>, extended canonical transformation partial differential relations are obtained as: <math display="block">\begin{align} \left( \frac{\partial Q_{m}}{\partial p_{n}}\right)_{\mathbf{q}, \mathbf{p},t} &= -\lambda \left( \frac{\partial q_{n}}{\partial P_{m}}\right)_{\mathbf{Q}, \mathbf{P},t} \\ \left( \frac{\partial Q_{m}}{\partial q_{n}}\right)_{\mathbf{q}, \mathbf{p},t} &= \lambda \left( \frac{\partial p_{n}}{\partial P_{m}}\right)_{\mathbf{Q}, \mathbf{P},t} \end{align}</math> <math display="block">\begin{align} \left( \frac{\partial P_{m}}{\partial p_{n}}\right)_{\mathbf{q}, \mathbf{p},t} &= \lambda \left( \frac{\partial q_{n}}{\partial Q_{m}}\right)_{\mathbf{Q}, \mathbf{P},t} \\ \left( \frac{\partial P_{m}}{\partial q_{n}}\right)_{\mathbf{q}, \mathbf{p},t} &= -\lambda \left( \frac{\partial p_{n}}{\partial Q_{m}}\right)_{\mathbf{Q}, \mathbf{P},t} \end{align}</math>
Edit summary
(Briefly describe your changes)
By publishing changes, you agree to the
Terms of Use
, and you irrevocably agree to release your contribution under the
CC BY-SA 4.0 License
and the
GFDL
. You agree that a hyperlink or URL is sufficient attribution under the Creative Commons license.
Cancel
Editing help
(opens in new window)