Open main menu
Home
Random
Recent changes
Special pages
Community portal
Preferences
About Wikipedia
Disclaimers
Incubator escapee wiki
Search
User menu
Talk
Dark mode
Contributions
Create account
Log in
Editing
Curvilinear coordinates
(section)
Warning:
You are not logged in. Your IP address will be publicly visible if you make any edits. If you
log in
or
create an account
, your edits will be attributed to your username, along with other benefits.
Anti-spam check. Do
not
fill this in!
===Geometric elements=== {{ordered list |1= '''[[Tangent vector]]:''' If '''x'''(''λ'') parametrizes a curve ''C'' in Cartesian coordinates, then :<math> {\partial \mathbf{x} \over \partial \lambda} = {\partial \mathbf{x} \over \partial q^i}{\partial q^i \over \partial \lambda} = \left( h_{ki}\cfrac{\partial q^i}{\partial \lambda}\right)\mathbf{b}_k </math> is a tangent vector to ''C'' in curvilinear coordinates (using the [[chain rule]]). Using the definition of the Lamé coefficients, and that for the metric ''g<sub>ij</sub>'' = 0 when ''i'' ≠ ''j'', the magnitude is: :<math> \left|{\partial \mathbf{x} \over \partial \lambda} \right| = \sqrt{h_{ki}h_{kj}\cfrac{\partial q^i}{\partial \lambda}\cfrac{\partial q^j}{\partial \lambda}} = \sqrt{ g_{ij}\cfrac{\partial q^i}{\partial \lambda}\cfrac{\partial q^j}{\partial \lambda}} = \sqrt{h_{i}^2\left(\cfrac{\partial q^i}{\partial \lambda}\right)^2} </math> |2= '''[[Tangent plane]] element:''' If '''x'''(''λ''<sub>1</sub>, ''λ''<sub>2</sub>) parametrizes a surface ''S'' in Cartesian coordinates, then the following cross product of tangent vectors is a normal vector to ''S'' with the magnitude of infinitesimal plane element, in curvilinear coordinates. Using the above result, :<math> {\partial \mathbf{x} \over \partial \lambda_1}\times {\partial \mathbf{x} \over \partial \lambda_2} =\left({\partial \mathbf{x} \over \partial q^i}{\partial q^i \over \partial \lambda_1}\right) \times \left({\partial \mathbf{x} \over \partial q^j}{\partial q^j \over \partial \lambda_2}\right) = \mathcal{E}_{kmp}\left( h_{ki}{\partial q^i \over \partial \lambda_1}\right)\left(h_{mj}{\partial q^j \over \partial \lambda_2}\right) \mathbf{b}_p </math> where <math>\mathcal{E}</math> is the [[permutation symbol]]. In determinant form: :<math>{\partial \mathbf{x} \over \partial \lambda_1}\times {\partial \mathbf{x} \over \partial \lambda_2} =\begin{vmatrix} \mathbf{e}_1 & \mathbf{e}_2 & \mathbf{e}_3 \\ h_{1i} \dfrac{\partial q^i}{\partial \lambda_1} & h_{2i} \dfrac{\partial q^i}{\partial \lambda_1} & h_{3i} \dfrac{\partial q^i }{\partial \lambda_1} \\ h_{1j} \dfrac{\partial q^j}{\partial \lambda_2} & h_{2j} \dfrac{\partial q^j}{\partial \lambda_2} & h_{3j} \dfrac{\partial q^j }{\partial \lambda_2} \end{vmatrix}</math> }}
Edit summary
(Briefly describe your changes)
By publishing changes, you agree to the
Terms of Use
, and you irrevocably agree to release your contribution under the
CC BY-SA 4.0 License
and the
GFDL
. You agree that a hyperlink or URL is sufficient attribution under the Creative Commons license.
Cancel
Editing help
(opens in new window)