Open main menu
Home
Random
Recent changes
Special pages
Community portal
Preferences
About Wikipedia
Disclaimers
Incubator escapee wiki
Search
User menu
Talk
Dark mode
Contributions
Create account
Log in
Editing
Description logic
(section)
Warning:
You are not logged in. Your IP address will be publicly visible if you make any edits. If you
log in
or
create an account
, your edits will be attributed to your username, along with other benefits.
Anti-spam check. Do
not
fill this in!
===Semantics=== The [[semantics]] of description logics are defined by interpreting concepts as sets of individuals and roles as sets of ordered pairs of individuals. Those individuals are typically assumed from a given domain. The semantics of non-atomic concepts and roles is then defined in terms of atomic concepts and roles. This is done by using a recursive definition similar to the syntax. ====The description logic ALC==== The following definitions follow the treatment in Baader et al.<ref name="DLHB"/> A ''terminological interpretation'' <math>\mathcal{I}=(\Delta^{\mathcal{I}}, \cdot^{\mathcal{I}})</math> over a ''signature'' <math>(N_C,N_R,N_O)</math> consists of * a non-empty set <math>\Delta^{\mathcal{I}}</math> called the [[domain of discourse|''domain'']] * a ''interpretation function'' <math>\cdot^{\mathcal{I}}</math> that maps: ** every ''individual'' <math>a</math> to an element <math>a^{\mathcal{I}} \in \Delta^{\mathcal{I}}</math> ** every ''concept'' to a subset of <math>\Delta^{\mathcal{I}}</math> ** every ''role name'' to a subset of <math>\Delta^{\mathcal{I}} \times \Delta^{\mathcal{I}}</math> such that * <math>\top^{\mathcal{I}} = \Delta^{\mathcal{I}}</math> * <math>\bot^{\mathcal{I}} = \emptyset</math> * <math>(C \sqcup D)^{\mathcal{I}} = C^{\mathcal{I}} \cup D^{\mathcal{I}}</math> ''([[union (set theory)|union]] means [[disjunction]])'' * <math>(C \sqcap D)^{\mathcal{I}} = C^{\mathcal{I}} \cap D^{\mathcal{I}}</math> ''([[intersection (set theory)|intersection]] means [[Logical conjunction|conjunction]])'' * <math>(\neg C)^{\mathcal{I}} = \Delta^{\mathcal{I}} \setminus C^{\mathcal{I}} </math> ''([[complement (set theory)|complement]] means [[negation]])'' * <math>(\forall R.C)^{\mathcal{I}} = \{x \in \Delta^{\mathcal{I}} | \text{for} \; \text{every} \; y, (x,y) \in R^{\mathcal{I}} \; \text{implies} \; y \in C^{\mathcal{I}} \} </math> * <math>(\exists R.C)^{\mathcal{I}} = \{x \in \Delta^{\mathcal{I}} | \text{there} \; \text{exists} \; y, (x,y) \in R^{\mathcal{I}} \; \text{and} \; y \in C^{\mathcal{I}}\} </math> Define <math>\mathcal{I} \models</math> (read ''in I holds'') as follows =====TBox===== * <math>\mathcal{I} \models C \sqsubseteq D</math> if and only if <math>C^{\mathcal{I}} \subseteq D^{\mathcal{I}}</math> * <math>\mathcal{I} \models \mathcal{T}</math> if and only if <math>\mathcal{I} \models \Phi</math> for every <math>\Phi \in \mathcal{T}</math> =====ABox===== * <math>\mathcal{I} \models a : C</math> if and only if <math>a^{\mathcal{I}} \in C^{\mathcal{I}}</math> * <math>\mathcal{I} \models (a,b) : R</math> if and only if <math>(a^{\mathcal{I}},b^{\mathcal{I}}) \in R^{\mathcal{I}}</math> * <math>\mathcal{I} \models \mathcal{A}</math> if and only if <math>\mathcal{I} \models \phi</math> for every <math>\phi \in \mathcal{A}</math> =====Knowledge base===== Let <math>\mathcal{K} = (\mathcal{T}, \mathcal{A})</math> be a knowledge base. * <math>\mathcal{I} \models \mathcal{K}</math> if and only if <math>\mathcal{I} \models \mathcal{T}</math> and <math>\mathcal{I} \models \mathcal{A}</math>
Edit summary
(Briefly describe your changes)
By publishing changes, you agree to the
Terms of Use
, and you irrevocably agree to release your contribution under the
CC BY-SA 4.0 License
and the
GFDL
. You agree that a hyperlink or URL is sufficient attribution under the Creative Commons license.
Cancel
Editing help
(opens in new window)