Open main menu
Home
Random
Recent changes
Special pages
Community portal
Preferences
About Wikipedia
Disclaimers
Incubator escapee wiki
Search
User menu
Talk
Dark mode
Contributions
Create account
Log in
Editing
Dirac delta function
(section)
Warning:
You are not logged in. Your IP address will be publicly visible if you make any edits. If you
log in
or
create an account
, your edits will be attributed to your username, along with other benefits.
Anti-spam check. Do
not
fill this in!
=====The heat kernel===== The [[heat kernel]], defined by <math display="block">\eta_\varepsilon(x) = \frac{1}{\sqrt{2\pi\varepsilon}} \mathrm{e}^{-\frac{x^2}{2\varepsilon}}</math> represents the temperature in an infinite wire at time {{math|1=''t'' > 0}}, if a unit of heat energy is stored at the origin of the wire at time {{math|1=''t'' = 0}}. This semigroup evolves according to the one-dimensional [[heat equation]]: <math display="block">\frac{\partial u}{\partial t} = \frac{1}{2}\frac{\partial^2 u}{\partial x^2}.</math> In [[probability theory]], {{math|1=''η<sub>ε</sub>''(''x'')}} is a [[normal distribution]] of [[variance]] {{mvar|ε}} and mean {{math|0}}. It represents the [[probability density function|probability density]] at time {{math|1=''t'' = ''ε''}} of the position of a particle starting at the origin following a standard [[Brownian motion]]. In this context, the semigroup condition is then an expression of the [[Markov property]] of Brownian motion. In higher-dimensional Euclidean space {{math|'''R'''<sup>''n''</sup>}}, the heat kernel is <math display="block">\eta_\varepsilon = \frac{1}{(2\pi\varepsilon)^{n/2}}\mathrm{e}^{-\frac{x\cdot x}{2\varepsilon}},</math> and has the same physical interpretation, {{lang|la|[[mutatis mutandis]]}}. It also represents a nascent delta function in the sense that {{math|''η<sub>ε</sub>'' → ''δ''}} in the distribution sense as {{math|''ε'' → 0}}.
Edit summary
(Briefly describe your changes)
By publishing changes, you agree to the
Terms of Use
, and you irrevocably agree to release your contribution under the
CC BY-SA 4.0 License
and the
GFDL
. You agree that a hyperlink or URL is sufficient attribution under the Creative Commons license.
Cancel
Editing help
(opens in new window)