Open main menu
Home
Random
Recent changes
Special pages
Community portal
Preferences
About Wikipedia
Disclaimers
Incubator escapee wiki
Search
User menu
Talk
Dark mode
Contributions
Create account
Log in
Editing
Fibonacci sequence
(section)
Warning:
You are not logged in. Your IP address will be publicly visible if you make any edits. If you
log in
or
create an account
, your edits will be attributed to your username, along with other benefits.
Anti-spam check. Do
not
fill this in!
== Generating function == The [[generating function]] of the Fibonacci sequence is the [[power series]] <math display=block> s(z) = \sum_{k=0}^\infty F_k z^k = 0 + z + z^2 + 2z^3 + 3z^4 + 5z^5 + \dots. </math> This series is convergent for any [[complex number]] <math>z</math> satisfying <math>|z| < 1/\varphi \approx 0.618,</math> and its sum has a simple closed form:<ref>{{Citation | last = Glaister | first = P | title = Fibonacci power series | journal = The Mathematical Gazette | year = 1995 | doi = 10.2307/3618079 | volume = 79 | issue = 486| pages = 521β25 | jstor = 3618079 | s2cid = 116536130 }}</ref> <math display=block>s(z)=\frac{z}{1-z-z^2}.</math> This can be proved by multiplying by <math display="inline">(1-z-z^2)</math>: <math display=block>\begin{align} (1 - z- z^2) s(z) &= \sum_{k=0}^{\infty} F_k z^k - \sum_{k=0}^{\infty} F_k z^{k+1} - \sum_{k=0}^{\infty} F_k z^{k+2} \\ &= \sum_{k=0}^{\infty} F_k z^k - \sum_{k=1}^{\infty} F_{k-1} z^k - \sum_{k=2}^{\infty} F_{k-2} z^k \\ &= 0z^0 + 1z^1 - 0z^1 + \sum_{k=2}^{\infty} (F_k - F_{k-1} - F_{k-2}) z^k \\ &= z, \end{align}</math> where all terms involving <math>z^k</math> for <math>k \ge 2</math> cancel out because of the defining Fibonacci recurrence relation. The [[partial fraction decomposition]] is given by <math display=block>s(z) = \frac{1}{\sqrt5}\left(\frac{1}{1 - \varphi z} - \frac{1}{1 - \psi z}\right)</math> where <math display=inline>\varphi = \tfrac12\left(1 + \sqrt{5}\right)</math> is the golden ratio and <math>\psi = \tfrac12\left(1 - \sqrt{5}\right)</math> is its [[Conjugate (square roots)|conjugate]]. The related function <math display=inline>z \mapsto -s\left(-1/z\right)</math> is the generating function for the [[negafibonacci]] numbers, and <math>s(z)</math> satisfies the [[functional equation]] <math display=block>s(z) = s\!\left(-\frac{1}{z}\right).</math> Using <math>z</math> equal to any of 0.01, 0.001, 0.0001, etc. lays out the first Fibonacci numbers in the decimal expansion of <math>s(z)</math>. For example, <math>s(0.001) = \frac{0.001}{0.998999} = \frac{1000}{998999} = 0.001001002003005008013021\ldots.</math>
Edit summary
(Briefly describe your changes)
By publishing changes, you agree to the
Terms of Use
, and you irrevocably agree to release your contribution under the
CC BY-SA 4.0 License
and the
GFDL
. You agree that a hyperlink or URL is sufficient attribution under the Creative Commons license.
Cancel
Editing help
(opens in new window)