Open main menu
Home
Random
Recent changes
Special pages
Community portal
Preferences
About Wikipedia
Disclaimers
Incubator escapee wiki
Search
User menu
Talk
Dark mode
Contributions
Create account
Log in
Editing
Gamma function
(section)
Warning:
You are not logged in. Your IP address will be publicly visible if you make any edits. If you
log in
or
create an account
, your edits will be attributed to your username, along with other benefits.
Anti-spam check. Do
not
fill this in!
== Log-gamma function == [[File:LogGamma Analytic Function.png|thumb|The analytic function {{math|logΓ(''z'')}}]] Because the gamma and factorial functions grow so rapidly for moderately large arguments, many computing environments include a function that returns the [[natural logarithm]] of the gamma function, often given the name <code>lgamma</code> or <code>lngamma</code> in programming environments or <code>gammaln</code> in spreadsheets. This grows much more slowly, and for combinatorial calculations allows adding and subtracting logarithmic values instead of multiplying and dividing very large values. It is often defined as<ref>{{cite web |title=Log Gamma Function |url=http://mathworld.wolfram.com/LogGammaFunction.html |website=Wolfram MathWorld |access-date=3 January 2019}}</ref> <math display="block">\operatorname{log\Gamma}(z) = - \gamma z - \log z + \sum_{k = 1}^\infty \left[ \frac z k - \log \left( 1 + \frac z k \right) \right].</math> The [[digamma function]], which is the derivative of this function, is also commonly seen. In the context of technical and physical applications, e.g. with wave propagation, the functional equation <math display="block"> \operatorname{log\Gamma}(z) = \operatorname{log\Gamma}(z+1) - \log z</math> [[File:Plot of logarithmic gamma function in the complex plane from -2-2i to 2+2i with colors created with Mathematica 13.1 function ComplexPlot3D.svg|alt=Logarithmic gamma function in the complex plane from −2 − 2i to 2 + 2i with colors|thumb|Logarithmic gamma function in the complex plane from −2 − 2i to 2 + 2i with colors]] is often used since it allows one to determine function values in one strip of width 1 in {{mvar|z}} from the neighbouring strip. In particular, starting with a good approximation for a {{mvar|z}} with large real part one may go step by step down to the desired {{mvar|z}}. Following an indication of [[Carl Friedrich Gauss]], Rocktaeschel (1922) proposed for {{math|logΓ(''z'')}} an approximation for large {{math|Re(''z'')}}: <math display="block"> \operatorname{log\Gamma}(z) \approx (z - \tfrac{1}{2}) \log z - z + \tfrac{1}{2}\log(2\pi).</math> This can be used to accurately approximate {{math|logΓ(''z'')}} for {{mvar|z}} with a smaller {{math|Re(''z'')}} via (P.E.Böhmer, 1939) <math display="block"> \operatorname{log\Gamma}(z-m) = \operatorname{log\Gamma}(z) - \sum_{k=1}^m \log(z-k).</math> A more accurate approximation can be obtained by using more terms from the asymptotic expansions of {{math|logΓ(''z'')}} and {{math|Γ(''z'')}}, which are based on Stirling's approximation. <math display="block">\Gamma(z)\sim z^{z - \frac12} e^{-z} \sqrt{2\pi} \left( 1 + \frac{1}{12z} + \frac{1}{288z^2} - \frac{139}{51\,840 z^3} - \frac{571}{2\,488\,320 z^4} \right) </math> : as {{math|{{abs|''z''}} → ∞}} at constant {{math|{{abs|arg(''z'')}} < π}}. (See sequences {{OEIS link|A001163}} and {{OEIS link|A001164}} in the [[On-Line Encyclopedia of Integer Sequences|OEIS]].) In a more "natural" presentation: <math display="block">\operatorname{log\Gamma}(z) = z \log z - z - \tfrac12 \log z + \tfrac12 \log 2\pi + \frac{1}{12z} - \frac{1}{360z^3} +\frac{1}{1260 z^5} +o\left(\frac1{z^5}\right)</math> : as {{math|{{abs|''z''}} → ∞}} at constant {{math|{{abs|arg(''z'')}} < π}}. (See sequences {{OEIS link|A046968}} and {{OEIS link|A046969}} in the [[On-Line Encyclopedia of Integer Sequences|OEIS]].) The coefficients of the terms with {{math|''k'' > 1}} of {{math|''z''<sup>1−''k''</sup>}} in the last expansion are simply <math display="block">\frac{B_k}{k(k-1)}</math> where the {{math|''B<sub>k</sub>''}} are the [[Bernoulli numbers]]. The gamma function also has Stirling Series (derived by [[Charles Hermite]] in 1900) equal to<ref>{{cite web |title=Leonhard Euler's Integral: An Historical Profile of the Gamma Function |url=https://www.maa.org/sites/default/files/pdf/upload_library/22/Chauvenet/Davis.pdf |archive-url=https://web.archive.org/web/20140912213629/http://www.maa.org/sites/default/files/pdf/upload_library/22/Chauvenet/Davis.pdf |archive-date=2014-09-12 |url-status=live |access-date=11 April 2022}}</ref> <math display="block">\operatorname{log\Gamma}(1+x)=\frac{x(x-1)}{2!} \log(2)+\frac{x(x-1)(x-2)}{3!} (\log(3)-2\log(2))+\cdots,\quad\Re (x)> 0.</math> === Properties === The [[Bohr–Mollerup theorem]] states that among all functions extending the factorial functions to the positive real numbers, only the gamma function is [[log-convex]], that is, its [[natural logarithm]] is [[convex function|convex]] on the positive real axis. Another characterisation is given by the [[Wielandt theorem]]. The gamma function is the unique function that simultaneously satisfies # <math>\Gamma(1) = 1</math>, # <math>\Gamma(z+1) = z \Gamma(z)</math> for all complex numbers <math>z</math> except the non-positive integers, and, # for integer {{mvar|n}}, <math display="inline">\lim_{n \to \infty} \frac{\Gamma(n+z)}{\Gamma(n)\;n^z} = 1</math> for all complex numbers <math>z</math>.<ref name="Davis" /> In a certain sense, the log-gamma function is the more natural form; it makes some intrinsic attributes of the function clearer. A striking example is the [[Taylor series]] of {{math|logΓ}} around 1: <math display="block">\operatorname{log\Gamma}(z+1)= -\gamma z +\sum_{k=2}^\infty \frac{\zeta(k)}{k} \, (-z)^k \qquad \forall\; |z| < 1</math> with {{math|''ζ''(''k'')}} denoting the [[Riemann zeta function]] at {{mvar|k}}. So, using the following property: <math display="block">\zeta(s) \Gamma(s) = \int_0^\infty \frac{t^s}{e^t-1} \, \frac{dt}{t}</math> an integral representation for the log-gamma function is: <math display="block">\operatorname{log\Gamma}(z+1)= -\gamma z + \int_0^\infty \frac{e^{-zt} - 1 + z t}{t \left(e^t - 1\right)} \, dt </math> or, setting {{math|1=''z'' = 1}} to obtain an integral for {{math|''γ''}}, we can replace the {{math|''γ''}} term with its integral and incorporate that into the above formula, to get: <math display="block">\operatorname{log\Gamma}(z+1)= \int_0^\infty \frac{e^{-zt} - ze^{-t} - 1 + z}{t \left(e^t -1\right)} \, dt\,. </math> There also exist special formulas for the logarithm of the gamma function for rational {{mvar|z}}. For instance, if <math>k</math> and <math>n</math> are integers with <math>k<n</math> and <math>k\neq n/2 \,,</math> then<ref name="iaroslav_07">{{cite journal |last=Blagouchine |first=Iaroslav V. |year=2015 |title=A theorem for the closed-form evaluation of the first generalized Stieltjes constant at rational arguments and some related summations |journal=Journal of Number Theory |volume=148 |pages=537–592 |arxiv=1401.3724 |doi=10.1016/j.jnt.2014.08.009}}</ref> <math display="block"> \begin{align} \operatorname{log\Gamma} \left(\frac{k}{n}\right) = {} & \frac{\,(n-2k)\log2\pi\,}{2n} + \frac{1}{2}\left\{\,\log\pi-\log\sin\frac{\pi k}{n} \,\right\} + \frac{1}{\pi}\!\sum_{r=1}^{n-1}\frac{\,\gamma+\log r\,}{r}\cdot\sin\frac{\,2\pi r k\,}{n} \\ & {} - \frac{1}{2\pi}\sin\frac{2\pi k}{n}\cdot\!\int_0^\infty \!\!\frac{\,e^{-nx}\!\cdot\log x\,}{\,\cosh x -\cos( 2\pi k/n )\,}\,{\mathrm d}x. \end{align} </math>This formula is sometimes used for numerical computation, since the integrand decreases very quickly. === Integration over log-gamma === The integral <math display="block"> \int_0^z \operatorname{log\Gamma} (x) \, dx</math> can be expressed in terms of the [[Barnes G-function|Barnes {{math|''G''}}-function]]<ref name="Alexejewsky">{{cite journal|first=W. P. |last=Alexejewsky |title=Über eine Classe von Funktionen, die der Gammafunktion analog sind |trans-title=On a class of functions analogous to the gamma function |journal=Leipzig Weidmannsche Buchhandlung |volume=46 |date=1894 |pages=268–275}}</ref><ref name="Barnes">{{cite journal|first=E. W. |last=Barnes |title=The theory of the ''G''-function |journal=Quart. J. Math. |volume=31 |date=1899 |pages=264–314}}</ref> (see [[Barnes G-function|Barnes {{math|''G''}}-function]] for a proof): <math display="block">\int_0^z \operatorname{log\Gamma}(x) \, dx = \frac{z}{2} \log (2 \pi) + \frac{z(1-z)}{2} + z \operatorname{log\Gamma}(z) - \log G(z+1)</math> where {{math|Re(''z'') > −1}}. It can also be written in terms of the [[Hurwitz zeta function]]:<ref name="Adamchik">{{cite journal|first=Victor S. |last=Adamchik |title=Polygamma functions of negative order |journal=J. Comput. Appl. Math. |volume=100 |issue=2 |date=1998 |pages=191–199 |doi=10.1016/S0377-0427(98)00192-7|doi-access=free }}</ref><ref name="Gosper">{{cite journal|first=R. W. |last=Gosper |title=<math>\textstyle \int_{n/4}^{m/6} \log F(z) \,dz</math> in special functions, ''q''-series and related topics |journal=J. Am. Math. Soc. |volume=14 |date=1997}}</ref> <math display="block">\int_0^z \operatorname{log\Gamma}(x) \, dx = \frac{z}{2} \log(2 \pi) + \frac{z(1-z)}{2} - \zeta'(-1) + \zeta'(-1,z) .</math> When <math>z=1</math> it follows that <math display="block"> \int_0^1 \operatorname{log\Gamma}(x) \, dx = \frac 1 2 \log(2\pi), </math> and this is a consequence of [[Raabe's formula]] as well. O. Espinosa and V. Moll derived a similar formula for the integral of the square of <math>\operatorname{log\Gamma}</math>:<ref name="EspinosaMoll">{{cite journal|first1=Olivier |last1=Espinosa|first2=Victor H. |last2=Moll|title= On Some Integrals Involving the Hurwitz Zeta Function: Part 1|journal=The Ramanujan Journal |volume=6 |date=2002 |issue=2|pages=159–188 |doi=10.1023/A:1015706300169|s2cid=128246166}}</ref> <math display="block">\int_{0}^{1} \log ^{2} \Gamma(x) d x=\frac{\gamma^{2}}{12}+\frac{\pi^{2}}{48}+\frac{1}{3} \gamma L_{1}+\frac{4}{3} L_{1}^{2}-\left(\gamma+2 L_{1}\right) \frac{\zeta^{\prime}(2)}{\pi^{2}}+\frac{\zeta^{\prime \prime}(2)}{2 \pi^{2}},</math> where <math>L_1</math> is <math>\frac12\log(2\pi)</math>. D. H. Bailey and his co-authors<ref name="Bailey">{{cite journal|first1=David H. |last1=Bailey|first2=David |last2=Borwein|first3=Jonathan M.|last3=Borwein|title= On Eulerian log-gamma integrals and Tornheim-Witten zeta functions|journal=The Ramanujan Journal |volume=36 |date=2015 |issue=1–2|pages=43–68 |doi=10.1007/s11139-012-9427-1|s2cid=7335291}}</ref> gave an evaluation for <math display="block">L_n:=\int_0^1 \log^n \Gamma(x) \, dx</math> when <math>n=1,2</math> in terms of the Tornheim–Witten zeta function and its derivatives. In addition, it is also known that<ref name="ACEKNM">{{cite journal|first1=T. |last1=Amdeberhan|first2=Mark W.|last2=Coffey|first3=Olivier|last3=Espinosa|first4=Christoph|last4=Koutschan|first5=Dante V.|last5=Manna|first6=Victor H.|last6=Moll|title= Integrals of powers of loggamma|journal=Proc. Amer. Math. Soc.|volume=139|issue=2 |date=2011 |pages=535–545 |doi=10.1090/S0002-9939-2010-10589-0|doi-access=free}}</ref> <math display="block"> \lim_{n\to\infty} \frac{L_n}{n!}=1. </math>
Edit summary
(Briefly describe your changes)
By publishing changes, you agree to the
Terms of Use
, and you irrevocably agree to release your contribution under the
CC BY-SA 4.0 License
and the
GFDL
. You agree that a hyperlink or URL is sufficient attribution under the Creative Commons license.
Cancel
Editing help
(opens in new window)