Open main menu
Home
Random
Recent changes
Special pages
Community portal
Preferences
About Wikipedia
Disclaimers
Incubator escapee wiki
Search
User menu
Talk
Dark mode
Contributions
Create account
Log in
Editing
Incircle and excircles
(section)
Warning:
You are not logged in. Your IP address will be publicly visible if you make any edits. If you
log in
or
create an account
, your edits will be attributed to your username, along with other benefits.
Anti-spam check. Do
not
fill this in!
===Nagel triangle and Nagel point=== {{Main|Extouch triangle}} [[File:Extouch Triangle and Nagel Point.svg|right|frame| {{legend-line|solid black|[[Extended side]]s of triangle {{math|β³''ABC''}}}} {{legend-line|solid orange|Excircles of {{math|β³''ABC''}} (tangent at {{mvar|T{{sub|A}}. T{{sub|B}}, T{{sub|C}}}})}} {{legend-line|solid red|'''Nagel/Extouch triangle''' {{math|β³''T{{sub|A}}T{{sub|B}}T{{sub|C}}''}}}} {{legend-line|solid #728fce|[[Splitter (geometry)|Splitters]]: lines connecting opposite vertices of {{math|β³''ABC''}} and {{math|β³''T{{sub|A}}T{{sub|B}}T{{sub|C}}''}} (concur at '''Nagel point''' {{mvar|N}})}} ]] The '''Nagel triangle''' or '''extouch triangle''' of <math>\triangle ABC</math> is denoted by the vertices <math>T_A</math>, <math>T_B</math>, and <math>T_C</math> that are the three points where the excircles touch the reference <math>\triangle ABC</math> and where <math>T_A</math> is opposite of <math>A</math>, etc. This <math>\triangle T_AT_BT_C</math> is also known as the '''extouch triangle''' of <math>\triangle ABC</math>. The [[circumcircle]] of the extouch <math>\triangle T_AT_BT_C</math> is called the '''Mandart circle''' (cf. [[Mandart inellipse]]). The three line segments <math>\overline{AT_A}</math>, <math>\overline{BT_B}</math> and <math>\overline{CT_C}</math> are called the [[splitter (geometry)|splitters]] of the triangle; they each bisect the perimeter of the triangle,{{Citation needed|date=May 2020}} :<math display=block>\overline{AB} + \overline{BT_A} = \overline{AC} + \overline{CT_A} = \frac{1}{2}\left( \overline{AB} + \overline{BC} + \overline{AC} \right).</math> The splitters intersect in a single point, the triangle's [[Nagel point]] <math>N_a</math> (or [[triangle center]] ''X''<sub>8</sub>). Trilinear coordinates for the vertices of the extouch triangle are given by{{Citation needed|date=May 2020}} :<math display=block>\begin{array}{ccccccc} T_A &=& 0 &:& \csc^2\frac{B}{2} &:& \csc^2\frac{C}{2} \\[2pt] T_B &=& \csc^2\frac{A}{2} &:& 0 &:& \csc^2\frac{C}{2} \\[2pt] T_C &=& \csc^2\frac{A}{2} &:& \csc^2\frac{B}{2} &:& 0 \end{array}</math> Trilinear coordinates for the Nagel point are given by{{Citation needed|date=May 2020}} :<math display=block>\csc^2\tfrac{A}{2} : \csc^2\tfrac{B}{2} : \csc^2\tfrac{C}{2},</math> or, equivalently, by the [[Law of Sines]], :<math display=block>\frac{b + c - a}{a} : \frac{c + a - b}{b} : \frac{a + b - c}{c}.</math> The Nagel point is the [[isotomic conjugate]] of the Gergonne point.{{Citation needed|date=May 2020}}
Edit summary
(Briefly describe your changes)
By publishing changes, you agree to the
Terms of Use
, and you irrevocably agree to release your contribution under the
CC BY-SA 4.0 License
and the
GFDL
. You agree that a hyperlink or URL is sufficient attribution under the Creative Commons license.
Cancel
Editing help
(opens in new window)