Open main menu
Home
Random
Recent changes
Special pages
Community portal
Preferences
About Wikipedia
Disclaimers
Incubator escapee wiki
Search
User menu
Talk
Dark mode
Contributions
Create account
Log in
Editing
Incomplete gamma function
(section)
Warning:
You are not logged in. Your IP address will be publicly visible if you make any edits. If you
log in
or
create an account
, your edits will be attributed to your username, along with other benefits.
Anti-spam check. Do
not
fill this in!
==Evaluation formulae== The lower gamma function can be evaluated using the power series expansion:<ref>{{Cite web|url=https://dlmf.nist.gov/8.11#ii|title=DLMF: Β§8.11 Asymptotic Approximations and Expansions β£ Incomplete Gamma Functions β£ Chapter 8 Incomplete Gamma and Related Functions|website=dlmf.nist.gov}}</ref> <math display="block">\gamma(s, z) = \sum_{k=0}^\infty \frac{z^s e^{-z} z^k}{s (s+1) \dots (s+k)}=z^s e^{-z}\sum_{k=0}^\infty\dfrac{z^k}{s^{\overline{k+1}}}</math> where <math>s^{\overline{k+1}}</math> is the [[Falling and rising factorials|Pochhammer symbol]]. An alternative expansion is <math display="block">\gamma(s,z)= \sum_{k=0}^\infty \frac{(-1)^k}{k!} \frac{z^{s+k}}{s+k}= \frac{z^s}{s} M(s, s+1,-z),</math> where {{math|''M''}} is Kummer's [[confluent hypergeometric function]]. ===Connection with Kummer's confluent hypergeometric function=== When the real part of {{mvar|z}} is positive, <math display="block">\gamma(s,z) = s^{-1} z^s e^{-z} M(1,s+1,z)</math> where <math display="block"> M(1, s+1, z) = 1 + \frac{z}{(s+1)} + \frac{z^2}{(s+1)(s+2)} + \frac{z^3}{(s+1)(s+2)(s+3)} + \cdots</math> has an infinite radius of convergence. Again with [[confluent hypergeometric functions]] and employing Kummer's identity, <math display="block">\begin{align} \Gamma(s,z) &= e^{-z} U(1-s,1-s,z) = \frac{z^s e^{-z}}{\Gamma(1-s)} \int_0^\infty \frac{e^{-u}}{u^s (z+u)} du \\ &= e^{-z} z^s U(1,1+s,z) = e^{-z} \int_0^\infty e^{-u} (z+u)^{s-1} du = e^{-z} z^s \int_0^\infty e^{-z u} (1+u)^{s-1} du. \end{align}</math> For the actual computation of numerical values, [[Gauss's continued fraction]] provides a useful expansion: <math display="block"> \gamma(s, z) = \cfrac{z^s e^{-z}}{s - \cfrac{s z}{s+1 + \cfrac{z}{s+2 - \cfrac{(s+1)z} {s+3 + \cfrac{2z}{s+4 - \cfrac{(s+2)z}{s+5 + \cfrac{3z}{s+6 - \ddots}}}}}}}. </math> This continued fraction converges for all complex {{mvar|z}}, provided only that {{mvar|s}} is not a negative integer. The upper gamma function has the continued fraction<ref>Abramowitz and Stegun [http://www.math.sfu.ca/~cbm/aands/page_263.htm p. 263, 6.5.31]</ref> <math display="block"> \Gamma(s, z) = \cfrac{z^s e^{-z}}{z+\cfrac{1-s}{1 + \cfrac{1}{z + \cfrac{2-s} {1 + \cfrac{2}{z+ \cfrac{3-s}{1+ \ddots}}}}}} </math> and{{Citation needed|date=February 2013}} <math display="block"> \Gamma(s, z)= \cfrac{z^s e^{-z}}{1+z-s+ \cfrac{s-1}{3+z-s+ \cfrac{2(s-2)}{5+z-s+ \cfrac{3(s-3)} {7+z-s+ \cfrac{4(s-4)}{9+z-s+ \ddots}}}}} </math> ===Multiplication theorem=== The following [[multiplication theorem]] holds true{{Citation needed|reason=Origin of statement unclear; also clarification of L-function would be helpful, possibly https://en.wikipedia.org/wiki/Laguerre_polynomials#Generalized_Laguerre_polynomials?|date=November 2024}}: <math display="block">\Gamma(s,z) = \frac 1 {t^s} \sum_{i=0}^{\infty} \frac{\left(1-\frac 1 t \right)^i}{i!} \Gamma(s+i,t z) = \Gamma(s,t z) -(t z)^s e^{-t z} \sum_{i=1}^{\infty} \frac{\left(\frac 1 t-1 \right)^i}{i} L_{i-1}^{(s-i)}(t z).</math> ===Software implementation=== The incomplete gamma functions are available in various of the [[computer algebra system]]s. Even if unavailable directly, however, incomplete function values can be calculated using functions commonly included in [[spreadsheet]]s (and computer algebra packages). In [[Microsoft Excel|Excel]], for example, these can be calculated using the [[gamma function]] combined with the [[gamma distribution]] function. *The lower incomplete function: <math> \gamma(s, x) </math> <code> = EXP(GAMMALN(s))*GAMMA.DIST(x,s,1,TRUE)</code>. *The upper incomplete function: <math> \Gamma(s, x) </math> <code> = EXP(GAMMALN(s))*(1-GAMMA.DIST(x,s,1,TRUE))</code>. These follow from the definition of the [[Gamma distribution#Cumulative distribution function|gamma distribution's cumulative distribution function]]. In [[Python (programming language)|Python]], the Scipy library provides implementations of incomplete gamma functions under {{code|scipy.special}}, however, it does not support negative values for the first argument. The function {{Code|gammainc}} from the mpmath library supports all complex arguments.
Edit summary
(Briefly describe your changes)
By publishing changes, you agree to the
Terms of Use
, and you irrevocably agree to release your contribution under the
CC BY-SA 4.0 License
and the
GFDL
. You agree that a hyperlink or URL is sufficient attribution under the Creative Commons license.
Cancel
Editing help
(opens in new window)