Open main menu
Home
Random
Recent changes
Special pages
Community portal
Preferences
About Wikipedia
Disclaimers
Incubator escapee wiki
Search
User menu
Talk
Dark mode
Contributions
Create account
Log in
Editing
Metric tensor
(section)
Warning:
You are not logged in. Your IP address will be publicly visible if you make any edits. If you
log in
or
create an account
, your edits will be attributed to your username, along with other benefits.
Anti-spam check. Do
not
fill this in!
==Examples== ===Euclidean metric=== The most familiar example is that of elementary [[Euclidean geometry]]: the two-dimensional [[Euclidean distance|Euclidean]] metric tensor. In the usual [[Cartesian coordinate system|Cartesian]] {{math|(''x'', ''y'')}} coordinates, we can write :<math>g = \begin{bmatrix} 1 & 0 \\ 0 & 1\end{bmatrix} \,. </math> The length of a curve reduces to the formula: :<math>L = \int_a^b \sqrt{ (dx)^2 + (dy)^2} \,. </math> The Euclidean metric in some other common coordinate systems can be written as follows. [[Polar coordinates]] {{math|(''r'', ''θ'')}}: :<math>\begin{align} x &= r \cos\theta \\ y &= r \sin\theta \\ J &= \begin{bmatrix}\cos\theta & -r\sin\theta \\ \sin\theta & r\cos\theta\end{bmatrix} \,. \end{align}</math> So :<math>g = J^\mathsf{T}J = \begin{bmatrix} \cos^2\theta + \sin^2\theta & -r\sin\theta \cos\theta + r\sin\theta\cos\theta \\ -r\cos\theta\sin\theta + r\cos\theta\sin\theta & r^2 \sin^2\theta + r^2\cos^2\theta \end{bmatrix} = \begin{bmatrix} 1 & 0 \\ 0 & r^2 \end{bmatrix} </math> by [[trigonometric identity|trigonometric identities]]. In general, in a [[Cartesian coordinate system]] {{math|''x''<sup>''i''</sup>}} on a [[Euclidean space]], the partial derivatives {{math|∂ / ∂''x<sup>i</sup>''}} are [[orthonormal]] with respect to the Euclidean metric. Thus the metric tensor is the [[Kronecker delta]] δ<sub>''ij''</sub> in this coordinate system. The metric tensor with respect to arbitrary (possibly curvilinear) coordinates {{math|''q<sup>i</sup>''}} is given by :<math>g_{ij} = \sum_{kl}\delta_{kl}\frac{\partial x^k}{\partial q^i} \frac{\partial x^l}{\partial q^j} = \sum_k\frac{\partial x^k}{\partial q^i}\frac{\partial x^k}{\partial q^j}. </math> ====The round metric on a sphere==== The unit sphere in {{math|'''ℝ'''<sup>3</sup>}} comes equipped with a natural metric induced from the ambient Euclidean metric, through the process explained in the [[#Induced_metric|induced metric section]]. In standard spherical coordinates {{math|(''θ'', ''φ'')}}, with {{math|''θ''}} the [[colatitude]], the angle measured from the {{mvar|z}}-axis, and {{mvar|φ}} the angle from the {{mvar|x}}-axis in the {{mvar|xy}}-plane, the metric takes the form :<math>g = \begin{bmatrix} 1 & 0 \\ 0 & \sin^2 \theta\end{bmatrix} \,.</math> This is usually written in the form :<math>ds^2 = d\theta^2 + \sin^2\theta\,d\varphi^2\,.</math> ===Lorentzian metrics from relativity=== {{main|Metric tensor (general relativity)}} In flat [[Minkowski space]] ([[special relativity]]), with coordinates :<math>r^\mu \rightarrow \left(x^0, x^1, x^2, x^3\right) = (ct, x, y, z) \, ,</math> the metric is, depending on choice of [[metric signature]], :<math>g = \begin{bmatrix} 1 & 0 & 0 & 0\\ 0 & -1 & 0 & 0 \\ 0 & 0 & -1 & 0 \\ 0 & 0 & 0 & -1 \end{bmatrix} \quad \text{or} \quad g = \begin{bmatrix} -1 & 0 & 0 & 0\\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix} \,. </math> For a curve with—for example—constant time coordinate, the length formula with this metric reduces to the usual length formula. For a [[Spacetime interval|timelike]] curve, the length formula gives the [[proper time]] along the curve. In this case, the [[spacetime interval]] is written as :<math>ds^2 = c^2 dt^2 - dx^2 - dy^2 - dz^2 = dr^\mu dr_\mu = g_{\mu \nu} dr^\mu dr^\nu\,. </math> The [[Schwarzschild metric]] describes the spacetime around a spherically symmetric body, such as a planet, or a [[black hole]]. With coordinates :<math>\left(x^0, x^1, x^2, x^3\right) = (ct, r, \theta, \varphi) \,,</math> we can write the metric as :<math>g_{\mu\nu} = \begin{bmatrix} \left(1 - \frac{2GM}{rc^2}\right) & 0 & 0 & 0 \\ 0 & -\left(1 - \frac{2GM}{r c^2}\right)^{-1} & 0 & 0 \\ 0 & 0 & -r^2 & 0 \\ 0 & 0 & 0 & -r^2 \sin^2 \theta \end{bmatrix}\,, </math> where {{mvar|G}} (inside the matrix) is the [[gravitational constant]] and {{mvar|M}} represents the total [[mass–energy equivalence|mass–energy]] content of the central object.
Edit summary
(Briefly describe your changes)
By publishing changes, you agree to the
Terms of Use
, and you irrevocably agree to release your contribution under the
CC BY-SA 4.0 License
and the
GFDL
. You agree that a hyperlink or URL is sufficient attribution under the Creative Commons license.
Cancel
Editing help
(opens in new window)