Open main menu
Home
Random
Recent changes
Special pages
Community portal
Preferences
About Wikipedia
Disclaimers
Incubator escapee wiki
Search
User menu
Talk
Dark mode
Contributions
Create account
Log in
Editing
Minimum spanning tree
(section)
Warning:
You are not logged in. Your IP address will be publicly visible if you make any edits. If you
log in
or
create an account
, your edits will be attributed to your username, along with other benefits.
Anti-spam check. Do
not
fill this in!
==Applications== Minimum spanning trees have direct applications in the design of networks, including [[computer network]]s, [[telecommunications network]]s, [[transport network|transportation network]]s, [[water supply network]]s, and [[electrical grid]]s (which they were first invented for, as mentioned above).<ref>{{citation |last1=Graham |first1=R. L. |title=On the history of the minimum spanning tree problem |journal=Annals of the History of Computing |volume=7 |issue=1 |pages=43–57 |year=1985 |doi=10.1109/MAHC.1985.10011 |mr=783327 |s2cid=10555375 |last2=Hell |first2=Pavol |author1-link=Ronald Graham |author2-link=Pavol Hell}}</ref> They are invoked as subroutines in algorithms for other problems, including the [[Christofides algorithm]] for approximating the [[traveling salesman problem]],<ref>[[Nicos Christofides]], [https://apps.dtic.mil/dtic/tr/fulltext/u2/a025602.pdf Worst-case analysis of a new heuristic for the travelling salesman problem], Report 388, Graduate School of Industrial Administration, CMU, 1976.</ref> approximating the multi-terminal minimum cut problem (which is equivalent in the single-terminal case to the [[maximum flow problem]]),<ref>{{cite journal |last1=Dahlhaus |first1=E. |last2=Johnson |first2=D. S. |author2-link=David S. Johnson |last3=Papadimitriou |first3=C. H. |author3-link=Christos Papadimitriou |last4=Seymour |first4=P. D. |author4-link=Paul Seymour (mathematician) |last5=Yannakakis |first5=M. |author5-link=Mihalis Yannakakis |date=August 1994 |title=The complexity of multiterminal cuts |url=http://akpublic.research.att.com/~dsj/papers/3way.pdf |url-status=dead |journal=[[SIAM Journal on Computing]] |volume=23 |issue=4 |pages=864–894 |doi=10.1137/S0097539792225297 |archive-url=https://web.archive.org/web/20040824184059/http://akpublic.research.att.com/~dsj/papers/3way.pdf |archive-date=24 August 2004 |access-date=17 December 2012}}</ref> and approximating the minimum-cost weighted perfect [[matching (graph theory)|matching]].<ref>{{cite conference |last1=Supowit |first1=Kenneth J. |last2=Plaisted |first2=David A. |last3=Reingold |first3=Edward M. |year=1980 |title=Heuristics for weighted perfect matching |url=http://dl.acm.org/citation.cfm?id=804689 |conference=12th Annual ACM Symposium on Theory of Computing (STOC '80) |location=New York, NY, USA |publisher=ACM |pages=398–419 |doi=10.1145/800141.804689}}</ref> Other practical applications based on minimal spanning trees include: * [[Taxonomy (general)|Taxonomy]].<ref>{{cite journal |last=Sneath |first=P. H. A. |date=1 August 1957 |title=The Application of Computers to Taxonomy |journal=Journal of General Microbiology |volume=17 |issue=1 |pages=201–226 |doi=10.1099/00221287-17-1-201 |pmid=13475686 |doi-access=free}}</ref> * [[Cluster analysis]]: clustering points in the plane,<ref>{{cite conference |last1=Asano |first1=T. |author1-link=Tetsuo Asano |last2=Bhattacharya |first2=B. |last3=Keil |first3=M. |last4=Yao |first4=F. |author4-link=Frances Yao |year=1988 |title=Clustering algorithms based on minimum and maximum spanning trees |conference=Fourth Annual Symposium on Computational Geometry (SCG '88) |volume=1 |pages=252–257 |doi=10.1145/73393.73419}}</ref> [[single-linkage clustering]] (a method of [[hierarchical clustering]]),<ref>{{cite journal |last1=Gower |first1=J. C. |last2=Ross |first2=G. J. S. |year=1969 |title=Minimum Spanning Trees and Single Linkage Cluster Analysis |journal=Journal of the Royal Statistical Society |series=C (Applied Statistics) |volume=18 |issue=1 |pages=54–64 |doi=10.2307/2346439 |jstor=2346439}}</ref> graph-theoretic clustering,<ref>{{cite journal |last=Päivinen |first=Niina |date=1 May 2005 |title=Clustering with a minimum spanning tree of scale-free-like structure |journal=Pattern Recognition Letters |volume=26 |issue=7 |pages=921–930 |bibcode=2005PaReL..26..921P |doi=10.1016/j.patrec.2004.09.039}}</ref> and clustering [[gene expression]] data.<ref>{{cite journal |last1=Xu |first1=Y. |last2=Olman |first2=V. |last3=Xu |first3=D. |date=1 April 2002 |title=Clustering gene expression data using a graph-theoretic approach: an application of minimum spanning trees |journal=Bioinformatics |volume=18 |issue=4 |pages=536–545 |doi=10.1093/bioinformatics/18.4.536 |pmid=12016051 |doi-access=free}}</ref> * Constructing trees for [[broadcasting (networking)|broadcasting]] in computer networks.<ref>{{cite journal |last1=Dalal |first1=Yogen K. |last2=Metcalfe |first2=Robert M. |date=1 December 1978 |title=Reverse path forwarding of broadcast packets |journal=Communications of the ACM |volume=21 |issue=12 |pages=1040–1048 |doi=10.1145/359657.359665 |s2cid=5638057 |doi-access=free}}</ref> * [[Image registration]]<ref>{{cite conference |last1=Ma |first1=B. |last2=Hero |first2=A. |last3=Gorman |first3=J. |last4=Michel |first4=O. |year=2000 |title=Image registration with minimum spanning tree algorithm |url=http://web.eecs.umich.edu/~hero/Preprints/MinimumSpanningTree.pdf |conference=International Conference on Image Processing |volume=1 |pages=481–484 |doi=10.1109/ICIP.2000.901000 |archive-url=https://ghostarchive.org/archive/20221009/http://web.eecs.umich.edu/~hero/Preprints/MinimumSpanningTree.pdf |archive-date=2022-10-09 |url-status=live}}</ref> and [[Image segmentation|segmentation]]<ref>P. Felzenszwalb, D. Huttenlocher: Efficient Graph-Based Image Segmentation. IJCV 59(2) (September 2004)</ref> – see [[minimum spanning tree-based segmentation]]. * Curvilinear [[feature extraction]] in [[computer vision]].<ref>{{cite journal |last1=Suk |first1=Minsoo |last2=Song |first2=Ohyoung |date=1 June 1984 |title=Curvilinear feature extraction using minimum spanning trees |journal=Computer Vision, Graphics, and Image Processing |volume=26 |issue=3 |pages=400–411 |doi=10.1016/0734-189X(84)90221-4}}</ref> * [[Handwriting recognition]] of mathematical expressions.<ref>{{cite book |last1=Tapia |first1=Ernesto |title=Graphics Recognition. Recent Advances and Perspectives |last2=Rojas |first2=Raúl |publisher=Springer-Verlag |year=2004 |isbn=978-3540224785 |series=Lecture Notes in Computer Science |volume=3088 |location=Berlin Heidelberg |pages=329–340 |chapter=Recognition of On-line Handwritten Mathematical Expressions Using a Minimum Spanning Tree Construction and Symbol Dominance |chapter-url=http://page.mi.fu-berlin.de/rojas/2003/grec03.pdf |archive-url=https://ghostarchive.org/archive/20221009/http://page.mi.fu-berlin.de/rojas/2003/grec03.pdf |archive-date=2022-10-09 |url-status=live}}</ref> * [[Circuit design]]: implementing efficient multiple constant multiplications, as used in [[finite impulse response]] filters.<ref>{{cite conference |last1=Ohlsson |first1=H. |year=2004 |title=Implementation of low complexity FIR filters using a minimum spanning tree |conference=12th IEEE Mediterranean Electrotechnical Conference (MELECON 2004) |volume=1 |pages=261–264 |doi=10.1109/MELCON.2004.1346826}}</ref> * [[Regionalisation]] of socio-geographic areas, the grouping of areas into homogeneous, contiguous regions.<ref>{{cite journal |last=Assunção |first=R. M. |author2=M. C. Neves |author3=G. Câmara |author4=C. Da Costa Freitas |year=2006 |title=Efficient regionalization techniques for socio-economic geographical units using minimum spanning trees |url=https://zenodo.org/record/3832352 |journal=International Journal of Geographical Information Science |volume=20 |issue=7 |pages=797–811 |doi=10.1080/13658810600665111 |bibcode=2006IJGIS..20..797A |s2cid=2530748}}</ref> * Comparing [[ecotoxicology]] data.<ref>{{cite journal |last1=Devillers |first1=J. |last2=Dore |first2=J.C. |date=1 April 1989 |title=Heuristic potency of the minimum spanning tree (MST) method in toxicology |journal=Ecotoxicology and Environmental Safety |volume=17 |issue=2 |pages=227–235 |doi=10.1016/0147-6513(89)90042-0 |pmid=2737116|bibcode=1989EcoES..17..227D }}</ref> * Topological [[observability]] in power systems.<ref>{{cite journal |last1=Mori |first1=H. |last2=Tsuzuki |first2=S. |date=1 May 1991 |title=A fast method for topological observability analysis using a minimum spanning tree technique |journal=IEEE Transactions on Power Systems |volume=6 |issue=2 |pages=491–500 |bibcode=1991ITPSy...6..491M |doi=10.1109/59.76691}}</ref> * Measuring homogeneity of two-dimensional materials.<ref>{{cite journal |last1=Filliben |first1=James J. |last2=Kafadar |first2=Karen |author2-link=Karen Kafadar |last3=Shier |first3=Douglas R. |date=1 January 1983 |title=Testing for homogeneity of two-dimensional surfaces |journal=Mathematical Modelling |volume=4 |issue=2 |pages=167–189 |doi=10.1016/0270-0255(83)90026-X |doi-access=}}</ref> * Minimax [[process control]].<ref>{{citation |last1=Kalaba |first1=Robert E. |title=Graph Theory and Automatic Control |year=1963 |url=http://www.dtic.mil/dtic/tr/fulltext/u2/297072.pdf |archive-url=https://web.archive.org/web/20160221191747/http://www.dtic.mil/dtic/tr/fulltext/u2/297072.pdf |archive-date=February 21, 2016 |url-status=dead}}</ref> * Minimum spanning trees can also be used to describe financial markets.<ref>Mantegna, R. N. (1999). [[arxiv:cond-mat/9802256|Hierarchical structure in financial markets]]. The European Physical Journal B-Condensed Matter and Complex Systems, 11(1), 193–197.</ref><ref>Djauhari, M., & Gan, S. (2015). [https://www.researchgate.net/profile/Maman_Djauhari3/publication/277250327_Optimality_problem_of_network_topology_in_stocks_market_analysis/links/59ebdb7d4585151983cb7795/Optimality-problem-of-network-topology-in-stocks-market-analysis.pdf Optimality problem of network topology in stocks market analysis]. Physica A: Statistical Mechanics and Its Applications, 419, 108–114.</ref> A correlation matrix can be created by calculating a coefficient of correlation between any two stocks. This matrix can be represented topologically as a complex network and a minimum spanning tree can be constructed to visualize relationships.
Edit summary
(Briefly describe your changes)
By publishing changes, you agree to the
Terms of Use
, and you irrevocably agree to release your contribution under the
CC BY-SA 4.0 License
and the
GFDL
. You agree that a hyperlink or URL is sufficient attribution under the Creative Commons license.
Cancel
Editing help
(opens in new window)