Open main menu
Home
Random
Recent changes
Special pages
Community portal
Preferences
About Wikipedia
Disclaimers
Incubator escapee wiki
Search
User menu
Talk
Dark mode
Contributions
Create account
Log in
Editing
Monotone convergence theorem
(section)
Warning:
You are not logged in. Your IP address will be publicly visible if you make any edits. If you
log in
or
create an account
, your edits will be attributed to your username, along with other benefits.
Anti-spam check. Do
not
fill this in!
==Proof of theorem== Set <math> f(x) = \sup_k f_k(x)</math> for the pointwise supremum at <math>x \in X</math>. '''Step 1.''' The function <math>f</math> is <math> (\Sigma, \operatorname{\mathcal B}_{\bar\R_{\geq 0}}) </math>–measurable, and the integral <math>\textstyle \int_X f \,d\mu </math> is well-defined (albeit possibly infinite)<ref name="SCHECHTER1997"/>{{rp|at=section 21.3}} ''proof:'' From <math>0 \le f_k(x) \le \infty</math> we get <math>0 \le f(x) \le \infty</math>. Hence we have to show that <math>f</math> is <math>(\Sigma,\operatorname{\mathcal B}_{\bar\R_{\geq 0}})</math>-measurable. For this, it suffices to prove that <math>f^{-1}([0,t])</math> is <math>\Sigma </math>-measurable for all <math>0 \le t \le \infty</math>, because the intervals <math>[0,t]</math> generate the [[Borel sigma algebra]] on <math>[0,\infty]</math> by taking countable unions, complements and countable intersections. Now since the <math>f_k(x)</math> is a non decreasing sequence, <math> f(x) = \sup_k f_k(x) \leq t</math> if and only if <math>f_k(x)\leq t</math> for all <math>k</math>. Hence :<math>f^{-1}([0, t]) = \bigcap_{k =1}^\infty f_k^{-1}([0,t]).</math> is a measurable set, being the countable intersection of the measurable sets <math>f_k^{-1}([0,t])</math>. Since <math>f \ge 0</math> the integral is well defined (but possibly infinite) as :<math> \int_X f \,d\mu = \sup_{s \in SF(f)}\int_X s \, d\mu</math>. '''Step 2.''' We have the inequality :<math>\sup_k \int_X f_k \,d\mu \le \int_X f \,d\mu </math> ''proof:'' We have <math>f_k(x) \le f(x)</math> for all <math>x \in X</math>, so <math>\int_X f_k(x) \, d\mu \le \int_X f(x)\, d\mu</math> by "monotonicity of the integral" (lemma 1). Then step 2 follows by the definition of suprememum. '''step 3''' We have the reverse inequality :<math> \int_X f \,d\mu \le \sup_k \int_X f_k \,d\mu </math>. ''proof:'' Denote by <math>\operatorname{SF}(f)</math> the set of simple <math>(\Sigma,\operatorname{\mathcal B}_{\R_{\geq 0}})</math>-measurable functions <math>s:X\to [0,\infty)</math> such that <math>0\leq s\leq f</math> on <math>X</math>. We need an "epsilon of room" to manoeuvre. For <math>s\in\operatorname{SF}(f)</math> and <math>0 <\varepsilon < 1</math>, define :<math>B^{s,\varepsilon}_k=\{x\in X\mid (1 - \varepsilon) s(x)\leq f_k(x)\}\subseteq X.</math> We '''claim''' the sets <math>B^{s,\varepsilon}_k</math> have the following properties: #<math>B^{s,\varepsilon}_k</math> is <math>\Sigma</math>-measurable. # <math>B^{s,\varepsilon}_k\subseteq B^{s,\varepsilon}_{k+1}</math> #<math> X=\bigcup_{k = 1}^\infty B^{s,\varepsilon}_k</math> Assuming the claim, by the definition of <math>B^{s,\varepsilon}_k</math> and "monotonicity of the Lebesgue integral" (lemma 1) we have :<math>\int_{B^{s,\varepsilon}_k}(1-\varepsilon) s\,d\mu\leq\int_{B^{s,\varepsilon}_k} f_k\,d\mu \leq\int_X f_k\,d\mu \le \sup_k \int_X f_k \, d\mu </math> Hence by "Lebesgue integral of a simple function as measure" (lemma 2), and "continuity from below" (lemma 3) we get: :<math> (1- \varepsilon)\int_X s \, d\mu = \int_X (1- \varepsilon)s \, d\mu = \sup_k \int_{B^{s,\varepsilon}_k} (1-\varepsilon)s\,d\mu \le \sup_k \int_X f_k \, d\mu. </math> so :<math>(1-\varepsilon)\int_X f d\mu \le \sup_k\int_X f_k d\mu</math> which since <math>\varepsilon</math> is arbitrary, proves step 3. Ad 1: Write <math>s=\sum_{1 \le i \le m}c_i\cdot{\mathbf 1}_{A_i}</math>, for non-negative constants <math>c_i \in \R_{\geq 0}</math>, and measurable sets <math>A_i\in\Sigma</math>, which we may assume are pairwise disjoint and with union <math>\textstyle X=\coprod^m_{i=1}A_i</math>. Then for <math> x\in A_i</math> we have <math>(1-\varepsilon)s(x)\leq f_k(x)</math> if and only if <math> f_k(x) \in [( 1- \varepsilon)c_i, \,\infty],</math> so :<math>B^{s,\varepsilon}_k=\coprod^m_{i=1}\Bigl(f^{-1}_k\Bigl([(1-\varepsilon)c_i,\infty]\Bigr)\cap A_i\Bigr)</math> which is measurable since the <math>f_k</math> are measurable. Ad 2: For <math> x \in B^{s,\varepsilon}_k</math> we have <math>(1 - \varepsilon)s(x) \le f_k(x)\le f_{k+1}(x)</math> so <math>x \in B^{s,\varepsilon}_{k + 1}.</math> Ad 3: Fix <math>x \in X</math>. If <math>s(x) = 0</math> then <math>(1 - \varepsilon)s(x) = 0 \le f_1(x)</math>, hence <math>x \in B^{s,\varepsilon}_1</math>. Otherwise, <math>s(x) > 0</math> and <math>(1-\varepsilon)s(x) < s(x) \le f(x) = \sup_k f(x)</math> so <math>(1- \varepsilon)s(x) < f_{N_x}(x)</math> for <math>N_x</math> sufficiently large, hence <math>x \in B^{s,\varepsilon}_{N_x}</math>. The proof of the monotone convergence theorem is complete. ===Relaxing the monotonicity assumption=== Under similar hypotheses to Beppo Levi's theorem, it is possible to relax the hypothesis of monotonicity.<ref>coudy (https://mathoverflow.net/users/6129/coudy), Do you know important theorems that remain unknown?, URL (version: 2018-06-05): https://mathoverflow.net/q/296540</ref> As before, let <math>(\Omega, \Sigma, \mu)</math> be a [[measure (mathematics)|measure space]] and <math>X \in \Sigma</math>. Again, <math>\{f_k\}_{k=1}^\infty</math> will be a sequence of <math>(\Sigma, \mathcal{B}_{\R_{\geq 0}})</math>-[[Measurable function|measurable]] non-negative functions <math>f_k:X\to [0,+\infty]</math>. However, we do not assume they are pointwise non-decreasing. Instead, we assume that <math display="inline">\{f_k(x)\}_{k=1}^\infty</math> converges for almost every <math>x</math>, we define <math>f</math> to be the pointwise limit of <math>\{f_k\}_{k=1}^\infty</math>, and we assume additionally that <math>f_k \le f</math> pointwise almost everywhere for all <math>k</math>. Then <math>f</math> is <math>(\Sigma, \mathcal{B}_{\R_{\geq 0}})</math>-measurable, and <math display="inline">\lim_{k\to\infty} \int_X f_k \,d\mu</math> exists, and <math display="block">\lim_{k\to\infty} \int_X f_k \,d\mu = \int_X f \,d\mu.</math>
Edit summary
(Briefly describe your changes)
By publishing changes, you agree to the
Terms of Use
, and you irrevocably agree to release your contribution under the
CC BY-SA 4.0 License
and the
GFDL
. You agree that a hyperlink or URL is sufficient attribution under the Creative Commons license.
Cancel
Editing help
(opens in new window)